赞
踩
Python 处理文本是一项非常常见的功能,本文整理了多种文本提取及NLP相关的案例,还是非常用心的
文章很长,高低要忍一下,如果忍不了,那就收藏吧,总会用到的
提取 PDF 内容
提取 Word 内容
提取 Web 网页内容
读取 Json 数据
读取 CSV 数据
删除字符串中的标点符号
使用 NLTK 删除停用词
使用 TextBlob 更正拼写
使用 NLTK 和 TextBlob 的词标记化
使用 NLTK 提取句子单词或短语的词干列表
使用 NLTK 进行句子或短语词形还原
使用 NLTK 从文本文件中查找每个单词的频率
从语料库中创建词云
NLTK 词法散布图
使用 countvectorizer 将文本转换为数字
使用 TF-IDF 创建文档术语矩阵
为给定句子生成 N-gram
使用带有二元组的 sklearn CountVectorize 词汇规范
使用 TextBlob 提取名词短语
如何计算词-词共现矩阵
使用 TextBlob 进行情感分析
使用 Goslate 进行语言翻译
使用 TextBlob 进行语言检测和翻译
使用 TextBlob 获取定义和同义词
使用 TextBlob 获取反义词列表
- # pip install PyPDF2 安装 PyPDF2
- import PyPDF2
- from PyPDF2 import PdfFileReader
-
- # Creating a pdf file object.
- pdf = open("test.pdf", "rb")
-
- # Creating pdf reader object.
- pdf_reader = PyPDF2.PdfFileReader(pdf)
-
- # Checking total number of pages in a pdf file.
- print("Total number of Pages:", pdf_reader.numPages)
-
- # Creating a page object.
- page = pdf_reader.getPage(200)
-
- # Extract data from a specific page number.
- print(page.extractText())
-
- # Closing the object.
- pdf.close()
- # pip install python-docx 安装 python-docx
-
-
- import docx
-
-
- def main():
- try:
- doc = docx.Document('test.docx') # Creating word reader object.
- data = ""
- fullText = []
- for para in doc.paragraphs:
- fullText.append(para.text)
- data = '\n'.join(fullText)
-
- print(data)
-
- except IOError:
- print('There was an error opening the file!')
- return
-
-
- if __name__ == '__main__':
- main()
- # pip install bs4 安装 bs4
-
- from urllib.request import Request, urlopen
- from bs4 import BeautifulSoup
-
- req = Request('http://www.cmegroup.com/trading/products/#sortField=oi&sortAsc=false&venues=3&page=1&cleared=1&group=1',
- headers={'User-Agent': 'Mozilla/5.0'})
-
- webpage = urlopen(req).read()
-
- # Parsing
- soup = BeautifulSoup(webpage, 'html.parser')
-
- # Formating the parsed html file
- strhtm = soup.prettify()
-
- # Print first 500 lines
- print(strhtm[:500])
-
- # Extract meta tag value
- print(soup.title.string)
- print(soup.find('meta', attrs={'property':'og:description'}))
-
- # Extract anchor tag value
- for x in soup.find_all('a'):
- print(x.string)
-
- # Extract Paragraph tag value
- for x in soup.find_all('p'):
- print(x.text)
- import requests
- import json
-
- r = requests.get("https://support.oneskyapp.com/hc/en-us/article_attachments/202761727/example_2.json")
- res = r.json()
-
- # Extract specific node content.
- print(res['quiz']['sport'])
-
- # Dump data as string
- data = json.dumps(res)
- print(data)
- import csv
-
- with open('test.csv','r') as csv_file:
- reader =csv.reader(csv_file)
- next(reader) # Skip first row
- for row in reader:
- print(row)
- import re
- import string
-
- data = "Stuning even for the non-gamer: This sound track was beautiful!\
- It paints the senery in your mind so well I would recomend\
- it even to people who hate vid. game music! I have played the game Chrono \
- Cross but out of all of the games I have ever played it has the best music! \
- It backs away from crude keyboarding and takes a fresher step with grate\
- guitars and soulful orchestras.\
- It would impress anyone who cares to listen!"
-
- # Methood 1 : Regex
- # Remove the special charaters from the read string.
- no_specials_string = re.sub('[!#?,.:";]', '', data)
- print(no_specials_string)
-
-
- # Methood 2 : translate()
- # Rake translator object
- translator = str.maketrans('', '', string.punctuation)
- data = data.translate(translator)
- print(data)
- from nltk.corpus import stopwords
-
-
- data = ['Stuning even for the non-gamer: This sound track was beautiful!\
- It paints the senery in your mind so well I would recomend\
- it even to people who hate vid. game music! I have played the game Chrono \
- Cross but out of all of the games I have ever played it has the best music! \
- It backs away from crude keyboarding and takes a fresher step with grate\
- guitars and soulful orchestras.\
- It would impress anyone who cares to listen!']
-
- # Remove stop words
- stopwords = set(stopwords.words('english'))
-
- output = []
- for sentence in data:
- temp_list = []
- for word in sentence.split():
- if word.lower() not in stopwords:
- temp_list.append(word)
- output.append(' '.join(temp_list))
-
-
- print(output)
- from textblob import TextBlob
-
- data = "Natural language is a cantral part of our day to day life, and it's so antresting to work on any problem related to langages."
-
- output = TextBlob(data).correct()
- print(output)
- import nltk
- from textblob import TextBlob
-
-
- data = "Natural language is a central part of our day to day life, and it's so interesting to work on any problem related to languages."
-
- nltk_output = nltk.word_tokenize(data)
- textblob_output = TextBlob(data).words
-
- print(nltk_output)
- print(textblob_output)
Output:
- ['Natural', 'language', 'is', 'a', 'central', 'part', 'of', 'our', 'day', 'to', 'day', 'life', ',', 'and', 'it', "'s", 'so', 'interesting', 'to', 'work', 'on', 'any', 'problem', 'related', 'to', 'languages', '.']
- ['Natural', 'language', 'is', 'a', 'central', 'part', 'of', 'our', 'day', 'to', 'day', 'life', 'and', 'it', "'s", 'so', 'interesting', 'to', 'work', 'on', 'any', 'problem', 'related', 'to', 'languages']
- from nltk.stem import PorterStemmer
-
- st = PorterStemmer()
- text = ['Where did he learn to dance like that?',
- 'His eyes were dancing with humor.',
- 'She shook her head and danced away',
- 'Alex was an excellent dancer.']
-
- output = []
- for sentence in text:
- output.append(" ".join([st.stem(i) for i in sentence.split()]))
-
- for item in output:
- print(item)
-
- print("-" * 50)
- print(st.stem('jumping'), st.stem('jumps'), st.stem('jumped'))
Output:
- where did he learn to danc like that?
- hi eye were danc with humor.
- she shook her head and danc away
- alex wa an excel dancer.
- --------------------------------------------------
- jump jump jump
- from nltk.stem import WordNetLemmatizer
-
- wnl = WordNetLemmatizer()
- text = ['She gripped the armrest as he passed two cars at a time.',
- 'Her car was in full view.',
- 'A number of cars carried out of state license plates.']
-
- output = []
- for sentence in text:
- output.append(" ".join([wnl.lemmatize(i) for i in sentence.split()]))
-
- for item in output:
- print(item)
-
- print("*" * 10)
- print(wnl.lemmatize('jumps', 'n'))
- print(wnl.lemmatize('jumping', 'v'))
- print(wnl.lemmatize('jumped', 'v'))
-
- print("*" * 10)
- print(wnl.lemmatize('saddest', 'a'))
- print(wnl.lemmatize('happiest', 'a'))
- print(wnl.lemmatize('easiest', 'a'))
Output:
- She gripped the armrest a he passed two car at a time.
- Her car wa in full view.
- A number of car carried out of state license plates.
- **********
- jump
- jump
- jump
- **********
- sad
- happy
- easy
- import nltk
- from nltk.corpus import webtext
- from nltk.probability import FreqDist
-
- nltk.download('webtext')
- wt_words = webtext.words('testing.txt')
- data_analysis = nltk.FreqDist(wt_words)
-
- # Let's take the specific words only if their frequency is greater than 3.
- filter_words = dict([(m, n) for m, n in data_analysis.items() if len(m) > 3])
-
- for key in sorted(filter_words):
- print("%s: %s" % (key, filter_words[key]))
-
- data_analysis = nltk.FreqDist(filter_words)
-
- data_analysis.plot(25, cumulative=False)
Output:
- [nltk_data] Downloading package webtext to
- [nltk_data] C:\Users\amit\AppData\Roaming\nltk_data...
- [nltk_data] Unzipping corpora\webtext.zip.
- 1989: 1
- Accessing: 1
- Analysis: 1
- Anyone: 1
- Chapter: 1
- Coding: 1
- Data: 1
- ...
- import nltk
- from nltk.corpus import webtext
- from nltk.probability import FreqDist
- from wordcloud import WordCloud
- import matplotlib.pyplot as plt
-
- nltk.download('webtext')
- wt_words = webtext.words('testing.txt') # Sample data
- data_analysis = nltk.FreqDist(wt_words)
-
- filter_words = dict([(m, n) for m, n in data_analysis.items() if len(m) > 3])
-
- wcloud = WordCloud().generate_from_frequencies(filter_words)
-
- # Plotting the wordcloud
- plt.imshow(wcloud, interpolation="bilinear")
-
- plt.axis("off")
- (-0.5, 399.5, 199.5, -0.5)
- plt.show()
- import nltk
- from nltk.corpus import webtext
- from nltk.probability import FreqDist
- from wordcloud import WordCloud
- import matplotlib.pyplot as plt
-
- words = ['data', 'science', 'dataset']
-
- nltk.download('webtext')
- wt_words = webtext.words('testing.txt') # Sample data
-
- points = [(x, y) for x in range(len(wt_words))
- for y in range(len(words)) if wt_words[x] == words[y]]
-
- if points:
- x, y = zip(*points)
- else:
- x = y = ()
-
- plt.plot(x, y, "rx", scalex=.1)
- plt.yticks(range(len(words)), words, color="b")
- plt.ylim(-1, len(words))
- plt.title("Lexical Dispersion Plot")
- plt.xlabel("Word Offset")
- plt.show()
- import pandas as pd
- from sklearn.feature_extraction.text import CountVectorizer
-
- # Sample data for analysis
- data1 = "Java is a language for programming that develops a software for several platforms. A compiled code or bytecode on Java application can run on most of the operating systems including Linux, Mac operating system, and Linux. Most of the syntax of Java is derived from the C++ and C languages."
- data2 = "Python supports multiple programming paradigms and comes up with a large standard library, paradigms included are object-oriented, imperative, functional and procedural."
- data3 = "Go is typed statically compiled language. It was created by Robert Griesemer, Ken Thompson, and Rob Pike in 2009. This language offers garbage collection, concurrency of CSP-style, memory safety, and structural typing."
-
- df1 = pd.DataFrame({'Java': [data1], 'Python': [data2], 'Go': [data2]})
-
- # Initialize
- vectorizer = CountVectorizer()
- doc_vec = vectorizer.fit_transform(df1.iloc[0])
-
- # Create dataFrame
- df2 = pd.DataFrame(doc_vec.toarray().transpose(),
- index=vectorizer.get_feature_names())
-
- # Change column headers
- df2.columns = df1.columns
- print(df2)
Output:
- Go Java Python
- and 2 2 2
- application 0 1 0
- are 1 0 1
- bytecode 0 1 0
- can 0 1 0
- code 0 1 0
- comes 1 0 1
- compiled 0 1 0
- derived 0 1 0
- develops 0 1 0
- for 0 2 0
- from 0 1 0
- functional 1 0 1
- imperative 1 0 1
- ...
- import pandas as pd
- from sklearn.feature_extraction.text import TfidfVectorizer
-
- # Sample data for analysis
- data1 = "Java is a language for programming that develops a software for several platforms. A compiled code or bytecode on Java application can run on most of the operating systems including Linux, Mac operating system, and Linux. Most of the syntax of Java is derived from the C++ and C languages."
- data2 = "Python supports multiple programming paradigms and comes up with a large standard library, paradigms included are object-oriented, imperative, functional and procedural."
- data3 = "Go is typed statically compiled language. It was created by Robert Griesemer, Ken Thompson, and Rob Pike in 2009. This language offers garbage collection, concurrency of CSP-style, memory safety, and structural typing."
-
- df1 = pd.DataFrame({'Java': [data1], 'Python': [data2], 'Go': [data2]})
-
- # Initialize
- vectorizer = TfidfVectorizer()
- doc_vec = vectorizer.fit_transform(df1.iloc[0])
-
- # Create dataFrame
- df2 = pd.DataFrame(doc_vec.toarray().transpose(),
- index=vectorizer.get_feature_names())
-
- # Change column headers
- df2.columns = df1.columns
- print(df2)
Output:
- Go Java Python
- and 0.323751 0.137553 0.323751
- application 0.000000 0.116449 0.000000
- are 0.208444 0.000000 0.208444
- bytecode 0.000000 0.116449 0.000000
- can 0.000000 0.116449 0.000000
- code 0.000000 0.116449 0.000000
- comes 0.208444 0.000000 0.208444
- compiled 0.000000 0.116449 0.000000
- derived 0.000000 0.116449 0.000000
- develops 0.000000 0.116449 0.000000
- for 0.000000 0.232898 0.000000
- ...
NLTK
- import nltk
- from nltk.util import ngrams
-
- # Function to generate n-grams from sentences.
- def extract_ngrams(data, num):
- n_grams = ngrams(nltk.word_tokenize(data), num)
- return [ ' '.join(grams) for grams in n_grams]
-
- data = 'A class is a blueprint for the object.'
-
- print("1-gram: ", extract_ngrams(data, 1))
- print("2-gram: ", extract_ngrams(data, 2))
- print("3-gram: ", extract_ngrams(data, 3))
- print("4-gram: ", extract_ngrams(data, 4))
TextBlob
- from textblob import TextBlob
-
- # Function to generate n-grams from sentences.
- def extract_ngrams(data, num):
- n_grams = TextBlob(data).ngrams(num)
- return [ ' '.join(grams) for grams in n_grams]
-
- data = 'A class is a blueprint for the object.'
-
- print("1-gram: ", extract_ngrams(data, 1))
- print("2-gram: ", extract_ngrams(data, 2))
- print("3-gram: ", extract_ngrams(data, 3))
- print("4-gram: ", extract_ngrams(data, 4))
Output:
- 1-gram: ['A', 'class', 'is', 'a', 'blueprint', 'for', 'the', 'object']
- 2-gram: ['A class', 'class is', 'is a', 'a blueprint', 'blueprint for', 'for the', 'the object']
- 3-gram: ['A class is', 'class is a', 'is a blueprint', 'a blueprint for', 'blueprint for the', 'for the object']
- 4-gram: ['A class is a', 'class is a blueprint', 'is a blueprint for', 'a blueprint for the', 'blueprint for the object']
- import pandas as pd
- from sklearn.feature_extraction.text import CountVectorizer
-
- # Sample data for analysis
- data1 = "Machine language is a low-level programming language. It is easily understood by computers but difficult to read by people. This is why people use higher level programming languages. Programs written in high-level languages are also either compiled and/or interpreted into machine language so that computers can execute them."
- data2 = "Assembly language is a representation of machine language. In other words, each assembly language instruction translates to a machine language instruction. Though assembly language statements are readable, the statements are still low-level. A disadvantage of assembly language is that it is not portable, because each platform comes with a particular Assembly Language"
-
- df1 = pd.DataFrame({'Machine': [data1], 'Assembly': [data2]})
-
- # Initialize
- vectorizer = CountVectorizer(ngram_range=(2, 2))
- doc_vec = vectorizer.fit_transform(df1.iloc[0])
-
- # Create dataFrame
- df2 = pd.DataFrame(doc_vec.toarray().transpose(),
- index=vectorizer.get_feature_names())
-
- # Change column headers
- df2.columns = df1.columns
- print(df2)
Output:
- Assembly Machine
- also either 0 1
- and or 0 1
- are also 0 1
- are readable 1 0
- are still 1 0
- assembly language 5 0
- because each 1 0
- but difficult 0 1
- by computers 0 1
- by people 0 1
- can execute 0 1
- ...
- from textblob import TextBlob
-
- #Extract noun
- blob = TextBlob("Canada is a country in the northern part of North America.")
-
- for nouns in blob.noun_phrases:
- print(nouns)
Output:
- canada
- northern part
- america
- import numpy as np
- import nltk
- from nltk import bigrams
- import itertools
- import pandas as pd
-
-
- def generate_co_occurrence_matrix(corpus):
- vocab = set(corpus)
- vocab = list(vocab)
- vocab_index = {word: i for i, word in enumerate(vocab)}
-
- # Create bigrams from all words in corpus
- bi_grams = list(bigrams(corpus))
-
- # Frequency distribution of bigrams ((word1, word2), num_occurrences)
- bigram_freq = nltk.FreqDist(bi_grams).most_common(len(bi_grams))
-
- # Initialise co-occurrence matrix
- # co_occurrence_matrix[current][previous]
- co_occurrence_matrix = np.zeros((len(vocab), len(vocab)))
-
- # Loop through the bigrams taking the current and previous word,
- # and the number of occurrences of the bigram.
- for bigram in bigram_freq:
- current = bigram[0][1]
- previous = bigram[0][0]
- count = bigram[1]
- pos_current = vocab_index[current]
- pos_previous = vocab_index[previous]
- co_occurrence_matrix[pos_current][pos_previous] = count
- co_occurrence_matrix = np.matrix(co_occurrence_matrix)
-
- # return the matrix and the index
- return co_occurrence_matrix, vocab_index
-
-
- text_data = [['Where', 'Python', 'is', 'used'],
- ['What', 'is', 'Python' 'used', 'in'],
- ['Why', 'Python', 'is', 'best'],
- ['What', 'companies', 'use', 'Python']]
-
- # Create one list using many lists
- data = list(itertools.chain.from_iterable(text_data))
- matrix, vocab_index = generate_co_occurrence_matrix(data)
-
-
- data_matrix = pd.DataFrame(matrix, index=vocab_index,
- columns=vocab_index)
- print(data_matrix)
Output:
- best use What Where ... in is Python used
- best 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 1.0
- use 0.0 0.0 0.0 0.0 ... 0.0 1.0 0.0 0.0
- What 1.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0
- Where 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0
- Pythonused 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 1.0
- Why 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 1.0
- companies 0.0 1.0 0.0 1.0 ... 1.0 0.0 0.0 0.0
- in 0.0 0.0 0.0 0.0 ... 0.0 0.0 1.0 0.0
- is 0.0 0.0 1.0 0.0 ... 0.0 0.0 0.0 0.0
- Python 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0
- used 0.0 0.0 1.0 0.0 ... 0.0 0.0 0.0 0.0
-
- [11 rows x 11 columns]
- from textblob import TextBlob
-
-
- def sentiment(polarity):
- if blob.sentiment.polarity < 0:
- print("Negative")
- elif blob.sentiment.polarity > 0:
- print("Positive")
- else:
- print("Neutral")
-
-
- blob = TextBlob("The movie was excellent!")
- print(blob.sentiment)
- sentiment(blob.sentiment.polarity)
-
- blob = TextBlob("The movie was not bad.")
- print(blob.sentiment)
- sentiment(blob.sentiment.polarity)
-
- blob = TextBlob("The movie was ridiculous.")
- print(blob.sentiment)
- sentiment(blob.sentiment.polarity)
Output:
- Sentiment(polarity=1.0, subjectivity=1.0)
- Positive
- Sentiment(polarity=0.3499999999999999, subjectivity=0.6666666666666666)
- Positive
- Sentiment(polarity=-0.3333333333333333, subjectivity=1.0)
- Negative
- import goslate
-
- text = "Comment vas-tu?"
-
- gs = goslate.Goslate()
-
- translatedText = gs.translate(text, 'en')
- print(translatedText)
-
- translatedText = gs.translate(text, 'zh')
- print(translatedText)
-
- translatedText = gs.translate(text, 'de')
- print(translatedText)
- from textblob import TextBlob
-
- blob = TextBlob("Comment vas-tu?")
-
- print(blob.detect_language())
-
- print(blob.translate(to='es'))
- print(blob.translate(to='en'))
- print(blob.translate(to='zh'))
Output:
- fr
- ¿Como estas tu?
- How are you?
- 你好吗?
- from textblob import TextBlob
- from textblob import Word
-
- text_word = Word('safe')
-
- print(text_word.definitions)
-
- synonyms = set()
- for synset in text_word.synsets:
- for lemma in synset.lemmas():
- synonyms.add(lemma.name())
-
- print(synonyms)
Output:
- ['strongbox where valuables can be safely kept', 'a ventilated or refrigerated cupboard for securing provisions from pests', 'contraceptive device consisting of a sheath of thin rubber or latex that is worn over the penis during intercourse', 'free from danger or the risk of harm', '(of an undertaking) secure from risk', 'having reached a base without being put out', 'financially sound']
- {'secure', 'rubber', 'good', 'safety', 'safe', 'dependable', 'condom', 'prophylactic'}
- from textblob import TextBlob
- from textblob import Word
-
- text_word = Word('safe')
-
- antonyms = set()
- for synset in text_word.synsets:
- for lemma in synset.lemmas():
- if lemma.antonyms():
- antonyms.add(lemma.antonyms()[0].name())
-
- print(antonyms)
Output:
{'dangerous', 'out'}
END
- 推荐阅读
-
-
-
- 牛逼!Python常用数据类型的基本操作(长文系列第①篇)
- 牛逼!Python的判断、循环和各种表达式(长文系列第②篇)
-
- 牛逼!Python函数和文件操作(长文系列第③篇)
-
- 牛逼!Python错误、异常和模块(长文系列第④篇)
- 吴恩达deeplearining.ai的经典总结资料
- Ps:从小程序直接获取下载
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。