当前位置:   article > 正文

机器学习中最基本的概念之一:数据集、样本、特征和标签_样本标签和特征

样本标签和特征

本文重点

数据集、样本、特征和标签是机器学习中的重要概念,这些概念在机器学习算法的设计和实现过程中起着至关重要的作用。在本文中,我们将对这些概念进行详细的讲解,以便更好地理解机器学习算法的基本原理和应用。

一、数据集

数据集是机器学习中最基本的概念之一,它是指一组相关数据的集合,如下所示,是一个房价预测的数据集,整个数据集总共又四条数据,也就是四条样本。

在机器学习中,数据集通常被用来训练集和测试集,有时候还会有验证集(后面会讲解不同数据集的作用)。

二、样本

在机器学习中,样本通常被用来表示一个实例或一个事件,例如一张图片、一段文本或一笔交易等,是数据集中的一条数据,样本是数据集中的一个个数据点,它是数据集中最基本的单位。

如上所示,(size=2104、Number of bedrooms=5、Number of floors=1、Age of home(year)=45、Price=460)就是数据集中的一条样本。

样本通常由一组特征一个标签组成(监督学习有标签、无监督学习没有标签),特征表示样本的属性或特性,标

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/IT小白/article/detail/144977
推荐阅读
相关标签
  

闽ICP备14008679号