赞
踩
作者手头上有一块香橙派5,其搭载有一颗三核心6TOPS算力的NPU, 由于发布时间不长,社区的资料还是比较匮乏, 所以在这里写一下关于如何提高NPU使用率的教程
文章和代码使用yolov5s进行讲解, 其他模型如resnet之类的同理,稍作修改就可以使用。 由于已经有很多人,如蓝灵风, 孙启尧等做了如何通过修改模型提高视频推理帧率的教程, 这里我就主要讲另外一种性能的方法——多线程异步
yolov5s模型激活函数为silu, 此激活函数量化类型为float16, 导致推理过程中使用CPU进行计算, 量化效果较糟。 将激活函数换为relu, 可以在牺牲一点精度的情况下获得巨大性能提升, 目前测试约为80 - 83帧, c++优化后或许有上百? 详情可看蓝灵风大佬的演示视频
查看NPU占用率的命令
sudo cat /sys/kernel/debug/rknpu/load
在运行官方demo时我们可以发现,推理过程中NPU使用率较低。
翻阅官方手册后得知,尽管rk官方有提供函数rknn_lite.init_runtime(core_mask=RKNNLite.NPU_CORE_0_1_2),使得RKNN模型能使用三核心进行推演,但NPU的使用率仍处于一个较低的水平,如果简单的使用以上函数初始化多个使用多核的rknn模型,在推理过程中就会发生内存泄漏/越界导致系统崩溃
然而使用以下函数初始化多个使用单核的模型却可以完美运行,那么我们接下来的目标就是通过这一方法初始化自己的rknn线程池
- rknn_lite.init_runtime(core_mask=RKNNLite.NPU_CORE_0)
- rknn_lite.init_runtime(core_mask=RKNNLite.NPU_CORE_1)
- rknn_lite.init_runtime(core_mask=RKNNLite.NPU_CORE_2)
首先设计一个初始化rknn模型的函数
- def initRKNN(rknnModel="./rknnModel/yolov5s.rknn", id=0):
- rknn_lite = RKNNLite()
- ret = rknn_lite.load_rknn(rknnModel)
- if ret != 0:
- print("Load RKNN rknnModel failed")
- exit(ret)
- if id == 0:
- ret = rknn_lite.init_runtime(core_mask=RKNNLite.NPU_CORE_0)
- elif id == 1:
- ret = rknn_lite.init_runtime(core_mask=RKNNLite.NPU_CORE_1)
- elif id == 2:
- ret = rknn_lite.init_runtime(core_mask=RKNNLite.NPU_CORE_2)
- elif id == -1:
- ret = rknn_lite.init_runtime(core_mask=RKNNLite.NPU_CORE_0_1_2)
- else:
- ret = rknn_lite.init_runtime()
- if ret != 0:
- print("Init runtime environment failed")
- exit(ret)
- print(rknnModel, "\t\tdone")
- return rknn_lite
初始化多个rknn模型为一个rknn对象列表,以备后面调用
- def initRKNNs(rknnModel="./rknnModel/yolov5s.rknn", TPEs=1):
- rknn_list = []
- for i in range(TPEs):
- rknn_list.append(initRKNN(rknnModel, i % 3))
- return rknn_list
最后结合python官方库里的线程池写一个自己的rknn池
- class rknnPoolExecutor():
- def __init__(self, rknnModel, TPEs, func):
- self.TPEs = TPEs
- self.queue = Queue()
- self.rknnPool = initRKNNs(rknnModel, TPEs)
- self.pool = ThreadPoolExecutor(max_workers=TPEs)
- self.func = func
- self.num = 0
-
- def put(self, frame):
- self.queue.put(self.pool.submit(
- self.func, self.rknnPool[self.num % self.TPEs], frame))
- self.num += 1
-
- def get(self):
- if self.queue.empty():
- return None, False
- temp = []
- temp.append(self.queue.get())
- for frame in as_completed(temp):
- return frame.result(), True
-
- def release(self):
- self.pool.shutdown()
- for rknn_lite in self.rknnPool:
- rknn_lite.release()
由于我们要处理的是视频,一个有着严格时间循序的对象,所以我们这里需要提前向线程池中输入几帧,以达到异步的操作(这里的myFunc是一个函数对象,对输入进行处理、推演和绘制目标框体,最后返回目标图像)
- # 线程数
- TPEs = 6
- # 初始化rknn池
- pool = rknnPoolExecutor(
- rknnModel=modelPath,
- TPEs=TPEs,
- func=myFunc)
-
- # 初始化异步所需要的帧
- if (cap.isOpened()):
- for i in range(TPEs + 1):
- ret, frame = cap.read()
- if not ret:
- cap.release()
- del pool
- exit(-1)
- pool.put(frame)
然后便可以对视频进行正常推理
- frames, loopTime, initTime = 0, time.time(), time.time()
- while (cap.isOpened()):
- frames += 1
- ret, frame = cap.read()
- if not ret:
- break
- pool.put(frame)
- frame, flag = pool.get()
- if flag == False:
- break
- cv2.imshow('test', frame)
- if cv2.waitKey(1) & 0xFF == ord('q'):
- break
- if frames % 30 == 0:
- print("30帧平均帧率:\t", 30 / (time.time() - loopTime), "帧")
- loopTime = time.time()
最后释放所有资源,防止NPU内存问题
- print("总平均帧率\t", frames / (time.time() - initTime))
- # 释放cap和rknn线程池
- cap.release()
- cv2.destroyAllWindows()
- pool.release()
这是在不同线程数下视频推理的帧率:
测试模型来源 yolov5s,激活函数为silu(非relu优化版本)
resnet18_for_rk3588, resnet26, resnet50
测试视频为 新宝岛
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
yolov5s | 13.4159 | 26.0832 | 35.8814 | 38.1729 | 43.2117 | 45.5549 | 45.2401 | 45.5819 | 46.4229 |
resnet18 | 288.91 | 483.83 | 577.60 | ||||||
resnet26 | 233.16 | 394.83 | 420.10 | ||||||
resnet50 | 186.17 | 259.88 | 284.49 |
resnet50在9线程下的NPU占用率:
可以看到此时NPU的性能发挥到近乎极致,其推理性能约为280帧
可移步rknn多线程获取yolov5s, resnet26, resnet50的rknn模型、完整代码和演示视频
- import cv2
- import time
- from rknnpool import rknnPoolExecutor
- # 图像处理函数,实际应用过程中需要自行修改
- from func import myFunc
-
- cap = cv2.VideoCapture('./video/islandBenchmark.mp4')
- # cap = cv2.VideoCapture(0)
- modelPath = "./rknnModel/yolov5s.rknn"
- # 线程数
- TPEs = 6
- # 初始化rknn池
- pool = rknnPoolExecutor(
- rknnModel=modelPath,
- TPEs=TPEs,
- func=myFunc)
-
- # 初始化异步所需要的帧
- if (cap.isOpened()):
- for i in range(TPEs + 1):
- ret, frame = cap.read()
- if not ret:
- cap.release()
- del pool
- exit(-1)
- pool.put(frame)
-
- frames, loopTime, initTime = 0, time.time(), time.time()
- while (cap.isOpened()):
- frames += 1
- ret, frame = cap.read()
- if not ret:
- break
- pool.put(frame)
- frame, flag = pool.get()
- if flag == False:
- break
- cv2.imshow('test', frame)
- if cv2.waitKey(1) & 0xFF == ord('q'):
- break
- if frames % 30 == 0:
- print("30帧平均帧率:\t", 30 / (time.time() - loopTime), "帧")
- loopTime = time.time()
-
- print("总平均帧率\t", frames / (time.time() - initTime))
- # 释放cap和rknn线程池
- cap.release()
- cv2.destroyAllWindows()
- pool.release()
- from queue import Queue
- from rknnlite.api import RKNNLite
- from concurrent.futures import ThreadPoolExecutor, as_completed
-
-
- def initRKNN(rknnModel="./rknnModel/yolov5s.rknn", id=0):
- rknn_lite = RKNNLite()
- ret = rknn_lite.load_rknn(rknnModel)
- if ret != 0:
- print("Load RKNN rknnModel failed")
- exit(ret)
- if id == 0:
- ret = rknn_lite.init_runtime(core_mask=RKNNLite.NPU_CORE_0)
- elif id == 1:
- ret = rknn_lite.init_runtime(core_mask=RKNNLite.NPU_CORE_1)
- elif id == 2:
- ret = rknn_lite.init_runtime(core_mask=RKNNLite.NPU_CORE_2)
- elif id == -1:
- ret = rknn_lite.init_runtime(core_mask=RKNNLite.NPU_CORE_0_1_2)
- else:
- ret = rknn_lite.init_runtime()
- if ret != 0:
- print("Init runtime environment failed")
- exit(ret)
- print(rknnModel, "\t\tdone")
- return rknn_lite
-
-
- def initRKNNs(rknnModel="./rknnModel/yolov5s.rknn", TPEs=1):
- rknn_list = []
- for i in range(TPEs):
- rknn_list.append(initRKNN(rknnModel, i % 3))
- return rknn_list
-
-
- class rknnPoolExecutor():
- def __init__(self, rknnModel, TPEs, func):
- self.TPEs = TPEs
- self.queue = Queue()
- self.rknnPool = initRKNNs(rknnModel, TPEs)
- self.pool = ThreadPoolExecutor(max_workers=TPEs)
- self.func = func
- self.num = 0
-
- def put(self, frame):
- self.queue.put(self.pool.submit(
- self.func, self.rknnPool[self.num % self.TPEs], frame))
- self.num += 1
-
- def get(self):
- if self.queue.empty():
- return None, False
- temp = []
- temp.append(self.queue.get())
- for frame in as_completed(temp):
- return frame.result(), True
-
- def release(self):
- self.pool.shutdown()
- for rknn_lite in self.rknnPool:
- rknn_lite.release()
- #以下代码改自https://github.com/rockchip-linux/rknn-toolkit2/tree/master/examples/onnx/yolov5
- import cv2
- import numpy as np
- from rknnlite.api import RKNNLite
-
- QUANTIZE_ON = True
-
- OBJ_THRESH, NMS_THRESH, IMG_SIZE = 0.25, 0.45, 640
-
- CLASSES = ("person", "bicycle", "car", "motorbike ", "aeroplane ", "bus ", "train", "truck ", "boat", "traffic light",
- "fire hydrant", "stop sign ", "parking meter", "bench", "bird", "cat", "dog ", "horse ", "sheep", "cow", "elephant",
- "bear", "zebra ", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite",
- "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife ",
- "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza ", "donut", "cake", "chair", "sofa",
- "pottedplant", "bed", "diningtable", "toilet ", "tvmonitor", "laptop ", "mouse ", "remote ", "keyboard ", "cell phone", "microwave ",
- "oven ", "toaster", "sink", "refrigerator ", "book", "clock", "vase", "scissors ", "teddy bear ", "hair drier", "toothbrush ")
-
-
- def sigmoid(x):
- return 1 / (1 + np.exp(-x))
-
-
- def xywh2xyxy(x):
- # Convert [x, y, w, h] to [x1, y1, x2, y2]
- y = np.copy(x)
- y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
- y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
- y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
- y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
- return y
-
-
- def process(input, mask, anchors):
-
- anchors = [anchors[i] for i in mask]
- grid_h, grid_w = map(int, input.shape[0:2])
-
- box_confidence = sigmoid(input[..., 4])
- box_confidence = np.expand_dims(box_confidence, axis=-1)
-
- box_class_probs = sigmoid(input[..., 5:])
-
- box_xy = sigmoid(input[..., :2])*2 - 0.5
-
- col = np.tile(np.arange(0, grid_w), grid_w).reshape(-1, grid_w)
- row = np.tile(np.arange(0, grid_h).reshape(-1, 1), grid_h)
- col = col.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)
- row = row.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)
- grid = np.concatenate((col, row), axis=-1)
- box_xy += grid
- box_xy *= int(IMG_SIZE/grid_h)
-
- box_wh = pow(sigmoid(input[..., 2:4])*2, 2)
- box_wh = box_wh * anchors
-
- box = np.concatenate((box_xy, box_wh), axis=-1)
-
- return box, box_confidence, box_class_probs
-
-
- def filter_boxes(boxes, box_confidences, box_class_probs):
- """Filter boxes with box threshold. It's a bit different with origin yolov5 post process!
- # Arguments
- boxes: ndarray, boxes of objects.
- box_confidences: ndarray, confidences of objects.
- box_class_probs: ndarray, class_probs of objects.
- # Returns
- boxes: ndarray, filtered boxes.
- classes: ndarray, classes for boxes.
- scores: ndarray, scores for boxes.
- """
- boxes = boxes.reshape(-1, 4)
- box_confidences = box_confidences.reshape(-1)
- box_class_probs = box_class_probs.reshape(-1, box_class_probs.shape[-1])
-
- _box_pos = np.where(box_confidences >= OBJ_THRESH)
- boxes = boxes[_box_pos]
- box_confidences = box_confidences[_box_pos]
- box_class_probs = box_class_probs[_box_pos]
-
- class_max_score = np.max(box_class_probs, axis=-1)
- classes = np.argmax(box_class_probs, axis=-1)
- _class_pos = np.where(class_max_score >= OBJ_THRESH)
-
- boxes = boxes[_class_pos]
- classes = classes[_class_pos]
- scores = (class_max_score * box_confidences)[_class_pos]
-
- return boxes, classes, scores
-
-
- def nms_boxes(boxes, scores):
- """Suppress non-maximal boxes.
- # Arguments
- boxes: ndarray, boxes of objects.
- scores: ndarray, scores of objects.
- # Returns
- keep: ndarray, index of effective boxes.
- """
- x = boxes[:, 0]
- y = boxes[:, 1]
- w = boxes[:, 2] - boxes[:, 0]
- h = boxes[:, 3] - boxes[:, 1]
-
- areas = w * h
- order = scores.argsort()[::-1]
-
- keep = []
- while order.size > 0:
- i = order[0]
- keep.append(i)
-
- xx1 = np.maximum(x[i], x[order[1:]])
- yy1 = np.maximum(y[i], y[order[1:]])
- xx2 = np.minimum(x[i] + w[i], x[order[1:]] + w[order[1:]])
- yy2 = np.minimum(y[i] + h[i], y[order[1:]] + h[order[1:]])
-
- w1 = np.maximum(0.0, xx2 - xx1 + 0.00001)
- h1 = np.maximum(0.0, yy2 - yy1 + 0.00001)
- inter = w1 * h1
-
- ovr = inter / (areas[i] + areas[order[1:]] - inter)
- inds = np.where(ovr <= NMS_THRESH)[0]
- order = order[inds + 1]
- keep = np.array(keep)
- return keep
-
-
- def yolov5_post_process(input_data):
- masks = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
- anchors = [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
- [59, 119], [116, 90], [156, 198], [373, 326]]
-
- boxes, classes, scores = [], [], []
- for input, mask in zip(input_data, masks):
- b, c, s = process(input, mask, anchors)
- b, c, s = filter_boxes(b, c, s)
- boxes.append(b)
- classes.append(c)
- scores.append(s)
-
- boxes = np.concatenate(boxes)
- boxes = xywh2xyxy(boxes)
- classes = np.concatenate(classes)
- scores = np.concatenate(scores)
-
- nboxes, nclasses, nscores = [], [], []
- for c in set(classes):
- inds = np.where(classes == c)
- b = boxes[inds]
- c = classes[inds]
- s = scores[inds]
-
- keep = nms_boxes(b, s)
-
- nboxes.append(b[keep])
- nclasses.append(c[keep])
- nscores.append(s[keep])
-
- if not nclasses and not nscores:
- return None, None, None
-
- boxes = np.concatenate(nboxes)
- classes = np.concatenate(nclasses)
- scores = np.concatenate(nscores)
-
- return boxes, classes, scores
-
-
- def draw(image, boxes, scores, classes):
- for box, score, cl in zip(boxes, scores, classes):
- top, left, right, bottom = box
- # print('class: {}, score: {}'.format(CLASSES[cl], score))
- # print('box coordinate left,top,right,down: [{}, {}, {}, {}]'.format(top, left, right, bottom))
- top = int(top)
- left = int(left)
- right = int(right)
- bottom = int(bottom)
-
- cv2.rectangle(image, (top, left), (right, bottom), (255, 0, 0), 2)
- cv2.putText(image, '{0} {1:.2f}'.format(CLASSES[cl], score),
- (top, left - 6),
- cv2.FONT_HERSHEY_SIMPLEX,
- 0.6, (0, 0, 255), 2)
-
-
- def letterbox(im, new_shape=(640, 640), color=(0, 0, 0)):
- shape = im.shape[:2] # current shape [height, width]
- if isinstance(new_shape, int):
- new_shape = (new_shape, new_shape)
-
- r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
-
- ratio = r, r # width, height ratios
- new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
- dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - \
- new_unpad[1] # wh padding
-
- dw /= 2 # divide padding into 2 sides
- dh /= 2
-
- if shape[::-1] != new_unpad: # resize
- im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
- top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
- left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
- im = cv2.copyMakeBorder(im, top, bottom, left, right,
- cv2.BORDER_CONSTANT, value=color) # add border
- return im, ratio, (dw, dh)
-
- def myFunc(rknn_lite, IMG):
- img = cv2.cvtColor(IMG, cv2.COLOR_BGR2RGB)
- img = cv2.resize(img, (IMG_SIZE, IMG_SIZE))
- outputs = rknn_lite.inference(inputs=[img])
-
- input0_data = outputs[0]
- input1_data = outputs[1]
- input2_data = outputs[2]
-
- input0_data = input0_data.reshape([3, -1]+list(input0_data.shape[-2:]))
- input1_data = input1_data.reshape([3, -1]+list(input1_data.shape[-2:]))
- input2_data = input2_data.reshape([3, -1]+list(input2_data.shape[-2:]))
-
- input_data = list()
- input_data.append(np.transpose(input0_data, (2, 3, 0, 1)))
- input_data.append(np.transpose(input1_data, (2, 3, 0, 1)))
- input_data.append(np.transpose(input2_data, (2, 3, 0, 1)))
-
- boxes, classes, scores = yolov5_post_process(input_data)
-
- img_1 = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
- if boxes is not None:
- draw(img_1, boxes, scores, classes)
- return img_1
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。