赞
踩
关注上方“深度学习技术前沿”,选择“星标公众号”,
资源干货,第一时间送达!
A Dual Reinforcement Learning Framework for Unsupervised Text Style Transfer: Fuli Luo, Peng Li, Jie Zhou, Pengcheng Yang, Baobao Chang, Xu Sun, Zhifang Sui
A Restart-based Rank-1 Evolution Strategy for Reinforcement Learning: Zefeng Chen, Yuren Zhou, Xiao-yu He, Siyu Jiang
An Actor-Critic-Attention Mechanism for Deep Reinforcement Learning in Multi-view Environments:Elaheh Barati, Xuewen Chen
An Atari Model Zoo for Analyzing, Visualizing, and Comparing Deep Reinforcement Learning Agents: Felipe Such, Vashisht Madhavan, Rosanne Liu, Rui Wang, Pablo Samuel Castro, Yulun Li, Jiale Zhi, Ludwig Schubert, Marc G. Bellemare, Jeff Clune, Joel Lehman
Automatic Successive Reinforcement Learning with Multiple Auxiliary Rewards: Zhao-Yang Fu, De-Chuan Zhan, Xin-Chun Li, Yi-Xing Lu
Autoregressive Policies for Continuous Control Deep Reinforcement Learning:Dmytro Korenkevych, Ashique Rupam Mahmood, Gautham Vasan, James Bergstra
Deep Multi-Agent Reinforcement Learning with Discrete-Continuous Hybrid Action Spaces :Haotian Fu, Hongyao Tang, Jianye Hao, Zihan Lei, Yingfeng Chen, Changjie Fan
Dynamic Electronic Toll Collection via Multi-Agent Deep Reinforcement Learning with Edge-Based Graph Convolutional Network Representation:Wei Qiu, Haipeng Chen, Bo An
Energy-Efficient Slithering Gait Exploration for a Snake-Like Robot Based on Reinforcement Learning: Zhenshan Bing, Christian Lemke, Zhuangyi Jiang, Kai Huang, Alois Knoll
Explaining Reinforcement Learning to Mere Mortals: An Empirical Study: Andrew Anderson, Jonathan Dodge, Amrita Sadarangani, Zoe Juozapaitis, Evan Newman, Jed Irvine, Souti Chattopadhyay, Alan Fern, Margaret Burnett
Hybrid Actor-Critic Reinforcement Learning in Parameterized Action Space: Zhou Fan, Rui Su, Weinan Zhang, Yong Yu
Incremental Learning of Planning Actions in Model-Based Reinforcement Learning: Alvin Ng, Ron Petrick
Interactive Reinforcement Learning with Dynamic Reuse of Prior Knowledge from Human/Agent's Demonstration: Zhaodong Wang, Matt Taylor
Interactive Teaching Algorithms for Inverse Reinforcement Learning: Parameswaran Kamalaruban, Rati Devidze, Volkan Cevher, Adish Singla
Large-Scale Home Energy Management Using Entropy-Based Collective Multiagent Deep Reinforcement Learning: Yaodong Yang, Jianye Hao, Yan Zheng, Chao Yu
Meta Reinforcement Learning with Task Embedding and Shared Policy: Lin Lan, Zhenguo Li, Xiaohong Guan, Pinghui Wang
Metatrace Actor-Critic: Online Step-Size Tuning by Meta-gradient Descent for Reinforcement Learning Control: Kenny Young, Baoxiang Wang, Matthew E. Taylor
Playing Card-Based RTS Games with Deep Reinforcement Learning: Tianyu Liu, Zijie Zheng, Hongchang Li, Kaigui Bian, Lingyang Song
Playing FPS Games With Environment-Aware Hierarchical Reinforcement Learning: Shihong Song, Jiayi Weng, Hang Su, Dong Yan, Haosheng Zou, Jun Zhu
Reinforcement Learning Experience Reuse with Policy Residual Representation: WenJi Zhou, Yang Yu, Yingfeng Chen, Kai Guan, Tangjie Lv, Changjie Fan, Zhi-Hua Zhou
Reward Learning for Efficient Reinforcement Learning in Extractive Document Summarisation: Yang Gao, Christian Meyer, Mohsen Mesgar, Iryna Gurevych
Sharing Experience in Multitask Reinforcement Learning: Tung-Long Vuong, Do-Van Nguyen, Tai-Long Nguyen, Cong-Minh Bui, Hai-Dang Kieu, Viet-Cuong Ta, Quoc-Long Tran, Thanh-Ha Le
SlateQ: A Tractable Decomposition for Reinforcement Learning with Recommendation Sets: Eugene Ie, Vihan Jain, Jing Wang, Sanmit Narvekar, Ritesh Agarwal, Rui Wu, Heng-Tze Cheng, Tushar Chandra, Craig Boutilier
Soft Policy Gradient Method for Maximum Entropy Deep Reinforcement Learning: Wenjie Shi, Shiji Song, Cheng Wu
Solving Continual Combinatorial Selection via Deep Reinforcement Learning: HyungSeok Song, Hyeryung Jang, Hai H. Tran, Se-eun Yoon, Kyunghwan Son, Donggyu Yun, Hyoju Chung, Yung Yi
Successor Options: An Option Discovery Framework for Reinforcement Learning: Rahul Ramesh, Manan Tomar, Balaraman Ravindran
Transfer of Temporal Logic Formulas in Reinforcement Learning: Zhe Xu, Ufuk Topcu
Using Natural Language for Reward Shaping in Reinforcement Learning: Prasoon Goyal, Scott Niekum, Raymond Mooney
Value Function Transfer for Deep Multi-Agent Reinforcement Learning Based on N-Step Returns: Yong Liu, Yujing Hu, Yang Gao, Yingfeng Chen, Changjie Fan
Failure-Scenario Maker for Rule-Based Agent using Multi-agent Adversarial Reinforcement Learning and its Application to Autonomous Driving: Akifumi Wachi
LTL and Beyond: Formal Languages for Reward Function Specification in Reinforcement Learning: Alberto Camacho, Rodrigo Toro Icarte, Toryn Q. Klassen, Richard Valenzano, Sheila McIlraith
A Survey of Reinforcement Learning Informed by Natural Language: Jelena Luketina↵, Nantas Nardelli, Gregory Farquhar, Jakob Foerster, Jacob Andreas, Edward Grefenstett, Shimon Whiteson, Tim Rocktäschel
Leveraging Human Guidance for Deep Reinforcement Learning Tasks: Ruohan Zhang, Faraz Torabi, Lin Guan, Dana H. Ballard, Peter Stone
CRSRL: Customer Routing System using Reinforcement Learning: Chong Long, Zining Liu, Xiaolu Lu, Zehong Hu, Yafang Wang
Deep Reinforcement Learning for Ride-sharing Dispatching and Repositioning: Zhiwei (Tony) Qin, Xiaocheng Tang, Yan Jiao, Fan Zhang, Chenxi Wang
Learning Deep Decentralized Policy Network by Collective Rewards for Real-Time Combat Game: Peixi Peng, Junliang Xing, Lili Cao, Lisen Mu, Chang Huang
Monte Carlo Tree Search for Policy Optimization: Xiaobai Ma, Katherine Driggs-Campbell, Zongzhang Zhang, Mykel J. Kochenderfer
On Principled Entropy Exploration in Policy Optimization: Jincheng Mei, Chenjun Xiao, Ruitong Huang, Dale Schuurmans, Martin Müller
Recurrent Existence Determination Through Policy Optimization: Baoxiang Wang
Diversity-Inducing Policy Gradient: Using Maximum Mean Discrepancy to Find a Set of Diverse Policies: Muhammad Masood, Finale Doshi-Velez
A probabilistic logic for resource-bounded multi-agent systems: Hoang Nga Nguyen, Abdur Rakib
A Value-based Trust Assessment Model for Multi-agent Systems: Kinzang Chhogyal, Abhaya Nayak, Aditya Ghose, Hoa Khanh Dam
Branch-and-Cut-and-Price for Multi-Agent Pathfinding: Edward Lam, Pierre Le Bodic, Daniel Harabor, Peter J. Stuckey
Decidability of Model Checking Multi-Agent Systems with Regular Expressions against Epistemic HS Specifications: Jakub Michaliszyn, Piotr Witkowski
Improved Heuristics for Multi-Agent Path Finding with Conflict-Based Search: Jiaoyang Li, Eli Boyarski, Ariel Felner, Hang Ma, Sven Koenig
Integrating Decision Sharing with Prediction in Decentralized Planning for Multi-Agent Coordination under Uncertainty: Minglong Li, Wenjing Yang, Zhongxuan Cai, Shaowu Yang, Ji Wang
Multi-agent Attentional Activity Recognition: Kaixuan Chen, Lina Yao, Dalin Zhang, Bin Guo, Zhiwen Yu
Multi-Agent Pathfinding with Continuous Time: Anton Andreychuk, Konstantin Yakovlev, Dor Atzmon, Roni Stern
Priority Inheritance with Backtracking for Iterative Multi-agent Path Finding: Keisuke Okumura, Manao Machida, Xavier Défago, Yasumasa Tamura
The Interplay of Emotions and Norms in Multiagent Systems: Anup K. Kalia, Nirav Ajmeri, Kevin S. Chan, Jin-Hee Cho, Sibel Adali, Munindar Singh
Unifying Search-based and Compilation-based Approaches to Multi-agent Path Finding through Satisfiability Modulo Theories: Pavel Surynek
Implicitly Coordinated Multi-Agent Path Finding under Destination Uncertainty: Success Guarantees and Computational Complexity (Extended Abstract): Bernhard Nebel, Thomas Bolander, Thorsten Engesser, Robert Mattmüller
Embodied Conversational AI Agents in a Multi-modal Multi-agent Competitive Dialogue: Rahul Divekar, Xiangyang Mou, Lisha Chen, Maíra Gatti de Bayser, Melina Alberio Guerra, Hui Su
Multi-Agent Path Finding on Ozobots: Roman Barták, Ivan Krasičenko, Jiří Švancara
Multi-Agent Visualization for Explaining Federated Learning: Xiguang Wei, Quan Li, Yang Liu, Han Yu, Tianjian Chen, Qiang Yang
Automated Machine Learning with Monte-Carlo Tree Search: Herilalaina Rakotoarison, Marc Schoenauer, Michele Sebag
Influence of State-Variable Constraints on Partially Observable Monte Carlo Planning: Alberto Castellini, Georgios Chalkiadakis, Alessandro Farinelli
Multiple Policy Value Monte Carlo Tree Search: Li-Cheng Lan, Wei Li, Ting han Wei, I-Chen Wu
Subgoal-Based Temporal Abstraction in Monte-Carlo Tree Search: Thomas Gabor, Jan Peter, Thomy Phan, Christian Meyer, Claudia Linnhoff-Popien
A Convergence Analysis of Distributed SGD with Communication-Efficient Gradient Sparsification: Shaohuai Shi, Kaiyong Zhao, Qiang Wang, Zhenheng Tang, Xiaowen Chu
AsymDPOP: Complete Inference for Asymmetric Distributed Constraint Optimization Problems: Yanchen Deng, Ziyu Chen, Dingding Chen, Wenxin Zhang, Xingqiong Jiang
Distributed Collaborative Feature Selection Based on Intermediate Representation: Xiucai Ye, Hongmin Li, Akira Imakura, Tetsuya Sakurai
FABA: An Algorithm for Fast Aggregation against Byzantine Attacks in Distributed Neural Networks: Qi Xia, Zeyi Tao, Zijiang Hao, Qun Li
Faster Distributed Deep Net Training: Computation and Communication Decoupled Stochastic Gradient Descent: Shuheng Shen, Linli Xu, Jingchang Liu, Xianfeng Liang, Yifei Cheng
Fully Distributed Bayesian Optimization with Stochastic Policies: Javier Garcia-Barcos, Ruben Martinez-Cantin
Github链接
https://github.com/NeuronDance/DeepRL/tree/master/DRL-ConferencePaper/IJCAI
重磅!深度学习技术前沿-微信群已成立
扫码添加群助手,可申请加入 深度学习技术前沿 微信群,旨在交流深度学习方面的学习、科研、工程项目等内容,并且还会在群中分享求职内推资料。后续还会根据大家的研究方向细分技术交流群。
一定要备注:研究方向+学校/公司+姓名(如图像分割+浙大+李四),按照格式备注,可更快被通过且邀请进群。
???? 长按识别,即可加群
???? 长按识别,即可关注
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。