赞
踩
Ollama是一个用于在本地计算机上运行大模型的软件
软件运行后监听11434端口,自己写的程序要调大模型就用这个端口
ollama命令
ollama list:显示模型列表
ollama show:显示模型的信息
ollama pull:拉取模型
ollama push:推送模型
ollama cp:拷贝一个模型
ollama rm:删除一个模型
ollama run:运行一个模型
ollama全是命令行下操作,所以结合web客户端界面使用【安装可选】
主流的web工具
1 Openwebui
2 LobeChat,功能强大,可调用Ollama的模型,也可调用openai,google的等,在设置界面中配置url和key即可
1 pom.xml,注意添加的依赖和配置了仓库
- <?xml version="1.0" encoding="UTF-8"?>
- <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
- xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
- <modelVersion>4.0.0</modelVersion>
- <parent>
- <groupId>org.springframework.boot</groupId>
- <artifactId>spring-boot-starter-parent</artifactId>
- <version>3.2.5</version>
- <relativePath/> <!-- lookup parent from repository -->
- </parent>
- <groupId>com.example</groupId>
- <artifactId>spring-ai-ollama</artifactId>
- <version>0.0.1-SNAPSHOT</version>
- <name>spring-ai-ollama</name>
- <description>spring-ai-ollama</description>
- <properties>
- <java.version>17</java.version>
- <spring-ai.version>0.8.1</spring-ai.version>
- </properties>
- <dependencies>
- <dependency>
- <groupId>org.springframework.boot</groupId>
- <artifactId>spring-boot-starter-web</artifactId>
- </dependency>
-
- <dependency>
- <groupId>io.springboot.ai</groupId>
- <artifactId>spring-ai-ollama-spring-boot-starter</artifactId>
- <version>1.0.0</version>
- </dependency>
-
- <dependency>
- <groupId>org.springframework.boot</groupId>
- <artifactId>spring-boot-devtools</artifactId>
- <scope>runtime</scope>
- <optional>true</optional>
- </dependency>
- <dependency>
- <groupId>org.projectlombok</groupId>
- <artifactId>lombok</artifactId>
- <optional>true</optional>
- </dependency>
- <dependency>
- <groupId>org.springframework.boot</groupId>
- <artifactId>spring-boot-starter-test</artifactId>
- <scope>test</scope>
- </dependency>
- </dependencies>
- <dependencyManagement>
- <dependencies>
- <dependency>
- <groupId>org.springframework.ai</groupId>
- <artifactId>spring-ai-bom</artifactId>
- <version>${spring-ai.version}</version>
- <type>pom</type>
- <scope>import</scope>
- </dependency>
- </dependencies>
- </dependencyManagement>
-
- <build>
- <plugins>
- <plugin>
- <groupId>org.springframework.boot</groupId>
- <artifactId>spring-boot-maven-plugin</artifactId>
- <configuration>
- <excludes>
- <exclude>
- <groupId>org.projectlombok</groupId>
- <artifactId>lombok</artifactId>
- </exclude>
- </excludes>
- </configuration>
- </plugin>
- </plugins>
- </build>
- <repositories>
- <repository>
- <id>spring-milestones</id>
- <name>Spring Milestones</name>
- <url>https://repo.spring.io/milestone</url>
- <snapshots>
- <enabled>false</enabled>
- </snapshots>
- </repository>
- </repositories>
-
- </project>
2 yml配置,写自己的 Ollama 地址,模型用哪个,先用Ollama去下载
- spring:
- application:
- name: spring-ai-ollama
-
- ai:
- ollama:
- base-url: http://120.55.99.218:11434
- chat:
- options:
- model: gemma:7b
3 测试
- import org.springframework.ai.chat.ChatResponse;
- import org.springframework.ai.chat.messages.AssistantMessage;
- import org.springframework.ai.chat.prompt.Prompt;
- import org.springframework.ai.chat.prompt.PromptTemplate;
- import org.springframework.ai.ollama.OllamaChatClient;
- import org.springframework.ai.ollama.api.OllamaOptions;
- import org.springframework.beans.factory.annotation.Autowired;
- import org.springframework.web.bind.annotation.*;
-
- @RestController
- public class AiController {
-
- @Autowired
- private OllamaChatClient ollamaChatClient;
-
- @GetMapping(value = "/chat_1")
- public String chat_1(@RequestParam(value = "message") String message) {
- String call = ollamaChatClient.call(message);
- System.out.println("模型回答 = " + call);
- return call;
- }
-
- @GetMapping(value = "/chat_2")
- public Object chat_2(@RequestParam(value = "message") String message) {
- Prompt prompt = new Prompt(
- message,
- OllamaOptions.create()
- //代码中配置,会覆盖application.yml中的配置
- .withModel("gemma:7b") //使用什么大模型
- .withTemperature(0.9F) //温度高,更发散,准确性降低,温度低,更保守,准确性高
- );
-
- ChatResponse call = ollamaChatClient.call(prompt);
- AssistantMessage output = call.getResult().getOutput();
- System.out.println("模型回答 = " + output.getContent());
- return output;
- }
-
- @GetMapping("/chat_3/{size}")
- public String chatYear(@PathVariable("size") Integer size) {
- String message = "随便写一句话,{size} 字以内";
- PromptTemplate promptTemplate = new PromptTemplate(message);
- promptTemplate.add("size", size);
- System.out.println(promptTemplate.render());
- return ollamaChatClient.call(promptTemplate.render());
- }
- }
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。