赞
踩
优势:
1.Kafka的吞吐量几乎是行业里最优秀的,在常规的机器配置下,一台机器可以达到每秒十几万的QPS,相当的强悍。
2.Kafka性能也很高,基本上发送消息给Kafka都是毫秒级的性能。可用性也很高。
3.Kafka是可以支持集群部署的,其中部分机器宕机是可以继续运行的。
缺点:
1.数据没有进入磁盘,仅是存储在缓冲区。宕机后缓冲区数据会丢失
应用场景:
Kafka用在用户行为日志的采集和传输上,这种日志适当丢失数据是没有关系的,而且一般量特别大,要求吞吐量要高,一般就是收发消息,不需要太多的高级功能
优势:
1.RabbitMQ可以保证数据不丢失,也能保证高可用性
2.支持部分高级功能,比如说死信队列,消息重试
缺点:
1.RabbitMQ的吞吐量是比较低的,一般就是每秒几万的级别,高并发量比较难撑起来
2.源码是erlang,比较难读,修改源码比较快困难
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数大数据工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年大数据全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上大数据开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新
如果你觉得这些内容对你有帮助,可以添加VX:vip204888 (备注大数据获取)
一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。