赞
踩
目标跟踪
语义分割
实例分割
全景分割
视频目标分割
超像素分割
交互式图像分割
NAS
GAN
Re-ID
3D点云(分类/分割/配准等)
3D点云分类
3D点云语义分割
3D点云实例分割
3D点云配准
3D点云补全
3D点云目标跟踪
其他
人脸
人脸检测
人脸活体检测
人脸表情识别
人脸转正
人脸3D重建
人体姿态估计(2D/3D)
3D人体姿态估计
人体解析
场景文本检测
场景文本识别
特征(点)检测和描述
超分辨率
视频超分辨率
模型压缩/剪枝
视频理解/行为识别
人群计数
深度估计
6D目标姿态估计
手势估计
显著性检测
去噪
去雨
去模糊
去雾
特征点检测与描述
视觉问答(VQA)
视频问答(VideoQA)
视觉语言导航
视频压缩
视频插帧
风格迁移
车道线检测
"人-物"交互(HOT)检测
轨迹预测
运动预测
光流估计
图像检索
虚拟试衣
HDR
对抗样本
三维重建
深度补全
语义场景补全
图像/视频描述
线框解析
数据集
其他
不确定中没中
==============================================================
Exploring Self-attention for Image Recognition
论文:https://hszhao.github.io/papers/cvpr20_san.pdf
代码:https://github.com/hszhao/SAN
Improving Convolutional Networks with Self-Calibrated Convolutions
主页:https://mmcheng.net/scconv/
论文:http://mftp.mmcheng.net/Papers/20cvprSCNet.pdf
代码:https://github.com/backseason/SCNet
Rethinking Depthwise Separable Convolutions: How Intra-Kernel Correlations Lead to Improved MobileNets
论文:https://arxiv.org/abs/2003.13549
代码:https://github.com/zeiss-microscopy/BSConv
===============================================================
Interpretable and Accurate Fine-grained Recognition via Region Grouping
论文:https://arxiv.org/abs/2005.10411
代码:https://github.com/zxhuang1698/interpretability-by-parts
Compositional Convolutional Neural Networks: A Deep Architecture with Innate Robustness to Partial Occlusion
论文:https://arxiv.org/abs/2003.04490
代码:https://github.com/AdamKortylewski/CompositionalNets
Spatially Attentive Output Layer for Image Classification
论文:https://arxiv.org/abs/2004.07570
代码(好像被原作者删除了):https://github.com/ildoonet/spatially-attentive-output-layer
===============================================================
SmallBigNet: Integrating Core and Contextual Views for Video Classification
论文:https://arxiv.org/abs/2006.14582
代码:https://github.com/xhl-video/SmallBigNet
===============================================================
Overcoming Classifier Imbalance for Long-tail Object Detection with Balanced Group Softmax
论文:http://openaccess.thecvf.com/content_CVPR_2020/papers/Li_Overcoming_Classifier_Imbalance_for_Long-Tail_Object_Detection_With_Balanced_Group_CVPR_2020_paper.pdf
代码:https://github.com/FishYuLi/BalancedGroupSoftmax
AugFPN: Improving Multi-scale Feature Learning for Object Detection
论文:http://openaccess.thecvf.com/content_CVPR_2020/papers/Guo_AugFPN_Improving_Multi-Scale_Feature_Learning_for_Object_Detection_CVPR_2020_paper.pdf
代码:https://github.com/Gus-Guo/AugFPN
Noise-Aware Fully Webly Supervised Object Detection
论文:http://openaccess.thecvf.com/content_CVPR_2020/html/Shen_Noise-Aware_Fully_Webly_Supervised_Object_Detection_CVPR_2020_paper.html
代码:https://github.com/shenyunhang/NA-fWebSOD/
Learning a Unified Sample Weighting Network for Object Detection
论文:https://arxiv.org/abs/2006.06568
代码:https://github.com/caiqi/sample-weighting-network
D2Det: Towards High Quality Object Detection and Instance Segmentation
论文:http://openaccess.thecvf.com/content_CVPR_2020/papers/Cao_D2Det_Towards_High_Quality_Object_Detection_and_Instance_Segmentation_CVPR_2020_paper.pdf
代码:https://github.com/JialeCao001/D2Det
Dynamic Refinement Network for Oriented and Densely Packed Object Detection
论文下载链接:https://arxiv.org/abs/2005.09973
代码和数据集:https://github.com/Anymake/DRN_CVPR2020
Scale-Equalizing Pyramid Convolution for Object Detection
论文:https://arxiv.org/abs/2005.03101
代码:https://github.com/jshilong/SEPC
Revisiting the Sibling Head in Object Detector
论文:https://arxiv.org/abs/2003.07540
代码:https://github.com/Sense-X/TSD
Scale-equalizing Pyramid Convolution for Object Detection
论文:暂无
代码:https://github.com/jshilong/SEPC
Detection in Crowded Scenes: One Proposal, Multiple Predictions
论文:https://arxiv.org/abs/2003.09163
代码:https://github.com/megvii-model/CrowdDetection
Instance-aware, Context-focused, and Memory-efficient Weakly Supervised Object Detection
论文:https://arxiv.org/abs/2004.04725
代码:https://github.com/NVlabs/wetectron
Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample Selection
论文:https://arxiv.org/abs/1912.02424
代码:https://github.com/sfzhang15/ATSS
BiDet: An Efficient Binarized Object Detector
论文:https://arxiv.org/abs/2003.03961
代码:https://github.com/ZiweiWangTHU/BiDet
Harmonizing Transferability and Discriminability for Adapting Object Detectors
论文:https://arxiv.org/abs/2003.06297
代码:https://github.com/chaoqichen/HTCN
CentripetalNet: Pursuing High-quality Keypoint Pairs for Object Detection
论文:https://arxiv.org/abs/2003.09119
代码:https://github.com/KiveeDong/CentripetalNet
Hit-Detector: Hierarchical Trinity Architecture Search for Object Detection
论文:https://arxiv.org/abs/2003.11818
代码:https://github.com/ggjy/HitDet.pytorch
EfficientDet: Scalable and Efficient Object Detection
论文:https://arxiv.org/abs/1911.09070
代码:https://github.com/google/automl/tree/master/efficientdet
=================================================================
SESS: Self-Ensembling Semi-Supervised 3D Object Detection
论文: https://arxiv.org/abs/1912.11803
代码:https://github.com/Na-Z/sess
Associate-3Ddet: Perceptual-to-Conceptual Association for 3D Point Cloud Object Detection
论文: https://arxiv.org/abs/2006.04356
代码:https://github.com/dleam/Associate-3Ddet
What You See is What You Get: Exploiting Visibility for 3D Object Detection
主页:https://www.cs.cmu.edu/~peiyunh/wysiwyg/
论文:https://arxiv.org/abs/1912.04986
代码:https://github.com/peiyunh/wysiwyg
Learning Depth-Guided Convolutions for Monocular 3D Object Detection
论文:https://arxiv.org/abs/1912.04799
代码:https://github.com/dingmyu/D4LCN
Structure Aware Single-stage 3D Object Detection from Point Cloud
论文:http://openaccess.thecvf.com/content_CVPR_2020/html/He_Structure_Aware_Single-Stage_3D_Object_Detection_From_Point_Cloud_CVPR_2020_paper.html
代码:https://github.com/skyhehe123/SA-SSD
IDA-3D: Instance-Depth-Aware 3D Object Detection from Stereo Vision for Autonomous Driving
论文:http://openaccess.thecvf.com/content_CVPR_2020/papers/Peng_IDA-3D_Instance-Depth-Aware_3D_Object_Detection_From_Stereo_Vision_for_Autonomous_CVPR_2020_paper.pdf
代码:https://github.com/swords123/IDA-3D
Train in Germany, Test in The USA: Making 3D Object Detectors Generalize
论文:https://arxiv.org/abs/2005.08139
代码:https://github.com/cxy1997/3D_adapt_auto_driving
MLCVNet: Multi-Level Context VoteNet for 3D Object Detection
论文:https://arxiv.org/abs/2004.05679
代码:https://github.com/NUAAXQ/MLCVNet
3DSSD: Point-based 3D Single Stage Object Detector
CVPR 2020 Oral
论文:https://arxiv.org/abs/2002.10187
代码:https://github.com/tomztyang/3DSSD
Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation
论文:https://arxiv.org/abs/2004.03572
代码:https://github.com/zju3dv/disprcn
End-to-End Pseudo-LiDAR for Image-Based 3D Object Detection
论文:https://arxiv.org/abs/2004.03080
代码:https://github.com/mileyan/pseudo-LiDAR_e2e
DSGN: Deep Stereo Geometry Network for 3D Object Detection
论文:https://arxiv.org/abs/2001.03398
代码:https://github.com/chenyilun95/DSGN
LiDAR-based Online 3D Video Object Detection with Graph-based Message Passing and Spatiotemporal Transformer Attention
论文:https://arxiv.org/abs/2004.01389
代码:https://github.com/yinjunbo/3DVID
PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection
论文:https://arxiv.org/abs/1912.13192
代码:https://github.com/sshaoshuai/PV-RCNN
Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud
论文:https://arxiv.org/abs/2003.01251
代码:https://github.com/WeijingShi/Point-GNN
=================================================================
Memory Enhanced Global-Local Aggregation for Video Object Detection
论文:https://arxiv.org/abs/2003.12063
代码:https://github.com/Scalsol/mega.pytorch
===============================================================
SiamCAR: Siamese Fully Convolutional Classification and Regression for Visual Tracking
论文:https://arxiv.org/abs/1911.07241
代码:https://github.com/ohhhyeahhh/SiamCAR
D3S – A Discriminative Single Shot Segmentation Tracker
论文:https://arxiv.org/abs/1911.08862
代码:https://github.com/alanlukezic/d3s
ROAM: Recurrently Optimizing Tracking Model
论文:https://arxiv.org/abs/1907.12006
代码:https://github.com/skyoung/ROAM
Siam R-CNN: Visual Tracking by Re-Detection
主页:https://www.vision.rwth-aachen.de/page/siamrcnn
论文:https://arxiv.org/abs/1911.12836
论文2:https://www.vision.rwth-aachen.de/media/papers/192/siamrcnn.pdf
代码:https://github.com/VisualComputingInstitute/SiamR-CNN
Cooling-Shrinking Attack: Blinding the Tracker with Imperceptible Noises
论文:https://arxiv.org/abs/2003.09595
代码:https://github.com/MasterBin-IIAU/CSA
High-Performance Long-Term Tracking with Meta-Updater
论文:https://arxiv.org/abs/2004.00305
代码:https://github.com/Daikenan/LTMU
AutoTrack: Towards High-Performance Visual Tracking for UAV with Automatic Spatio-Temporal Regularization
论文:https://arxiv.org/abs/2003.12949
代码:https://github.com/vision4robotics/AutoTrack
Probabilistic Regression for Visual Tracking
论文:https://arxiv.org/abs/2003.12565
代码:https://github.com/visionml/pytracking
MAST: A Memory-Augmented Self-supervised Tracker
论文:https://arxiv.org/abs/2002.07793
代码:https://github.com/zlai0/MAST
Siamese Box Adaptive Network for Visual Tracking
论文:https://arxiv.org/abs/2003.06761
代码:https://github.com/hqucv/siamban
3D-ZeF: A 3D Zebrafish Tracking Benchmark Dataset
主页:https://vap.aau.dk/3d-zef/
论文:https://arxiv.org/abs/2006.08466
代码:https://bitbucket.org/aauvap/3d-zef/src/master/
数据集:https://motchallenge.net/data/3D-ZeF20
===============================================================
FDA: Fourier Domain Adaptation for Semantic Segmentation
论文:https://arxiv.org/abs/2004.05498
代码:https://github.com/YanchaoYang/FDA
Super-BPD: Super Boundary-to-Pixel Direction for Fast Image Segmentation
论文:暂无
代码:https://github.com/JianqiangWan/Super-BPD
Single-Stage Semantic Segmentation from Image Labels
论文:https://arxiv.org/abs/2005.08104
代码:https://github.com/visinf/1-stage-wseg
Learning Texture Invariant Representation for Domain Adaptation of Semantic Segmentation
论文:https://arxiv.org/abs/2003.00867
代码:https://github.com/MyeongJin-Kim/Learning-Texture-Invariant-Representation
MSeg: A Composite Dataset for Multi-domain Semantic Segmentation
论文:http://vladlen.info/papers/MSeg.pdf
代码:https://github.com/mseg-dataset/mseg-api
CascadePSP: Toward Class-Agnostic and Very High-Resolution Segmentation via Global and Local Refinement
论文:https://arxiv.org/abs/2005.02551
代码:https://github.com/hkchengrex/CascadePSP
Unsupervised Intra-domain Adaptation for Semantic Segmentation through Self-Supervision
Oral
论文:https://arxiv.org/abs/2004.07703
代码:https://github.com/feipan664/IntraDA
Self-supervised Equivariant Attention Mechanism for Weakly Supervised Semantic Segmentation
论文:https://arxiv.org/abs/2004.04581
代码:https://github.com/YudeWang/SEAM
Temporally Distributed Networks for Fast Video Segmentation
论文:https://arxiv.org/abs/2004.01800
代码:https://github.com/feinanshan/TDNet
Context Prior for Scene Segmentation
论文:https://arxiv.org/abs/2004.01547
代码:https://git.io/ContextPrior
Strip Pooling: Rethinking Spatial Pooling for Scene Parsing
论文:https://arxiv.org/abs/2003.13328
代码:https://github.com/Andrew-Qibin/SPNet
Cars Can’t Fly up in the Sky: Improving Urban-Scene Segmentation via Height-driven Attention Networks
论文:https://arxiv.org/abs/2003.05128
代码:https://github.com/shachoi/HANet
Learning Dynamic Routing for Semantic Segmentation
论文:https://arxiv.org/abs/2003.10401
代码:https://github.com/yanwei-li/DynamicRouting
===============================================================
D2Det: Towards High Quality Object Detection and Instance Segmentation
论文:http://openaccess.thecvf.com/content_CVPR_2020/papers/Cao_D2Det_Towards_High_Quality_Object_Detection_and_Instance_Segmentation_CVPR_2020_paper.pdf
代码:https://github.com/JialeCao001/D2Det
PolarMask: Single Shot Instance Segmentation with Polar Representation
论文:https://arxiv.org/abs/1909.13226
代码:https://github.com/xieenze/PolarMask
解读:https://zhuanlan.zhihu.com/p/84890413
CenterMask : Real-Time Anchor-Free Instance Segmentation
论文:https://arxiv.org/abs/1911.06667
代码:https://github.com/youngwanLEE/CenterMask
BlendMask: Top-Down Meets Bottom-Up for Instance Segmentation
论文:https://arxiv.org/abs/2001.00309
代码:https://github.com/aim-uofa/AdelaiDet
Deep Snake for Real-Time Instance Segmentation
论文:https://arxiv.org/abs/2001.01629
代码:https://github.com/zju3dv/snake
Mask Encoding for Single Shot Instance Segmentation
论文:https://arxiv.org/abs/2003.11712
代码:https://github.com/aim-uofa/AdelaiDet
===============================================================
Video Panoptic Segmentation
论文:https://arxiv.org/abs/2006.11339
代码:https://github.com/mcahny/vps
数据集:https://www.dropbox.com/s/ecem4kq0fdkver4/cityscapes-vps-dataset-1.0.zip?dl=0
Pixel Consensus Voting for Panoptic Segmentation
论文:https://arxiv.org/abs/2004.01849
代码:还未公布
BANet: Bidirectional Aggregation Network with Occlusion Handling for Panoptic Segmentation
论文:https://arxiv.org/abs/2003.14031
代码:https://github.com/Mooonside/BANet
=================================================================
A Transductive Approach for Video Object Segmentation
论文:https://arxiv.org/abs/2004.07193
代码:https://github.com/microsoft/transductive-vos.pytorch
State-Aware Tracker for Real-Time Video Object Segmentation
论文:https://arxiv.org/abs/2003.00482
代码:https://github.com/MegviiDetection/video_analyst
Learning Fast and Robust Target Models for Video Object Segmentation
论文:https://arxiv.org/abs/2003.00908
代码:https://github.com/andr345/frtm-vos
Learning Video Object Segmentation from Unlabeled Videos
论文:https://arxiv.org/abs/2003.05020
代码:https://github.com/carrierlxk/MuG
================================================================
Superpixel Segmentation with Fully Convolutional Networks
论文:https://arxiv.org/abs/2003.12929
代码:https://github.com/fuy34/superpixel_fcn
==================================================================
Interactive Object Segmentation with Inside-Outside Guidance
论文下载链接:http://openaccess.thecvf.com/content_CVPR_2020/papers/Zhang_Interactive_Object_Segmentation_With_Inside-Outside_Guidance_CVPR_2020_paper.pdf
代码:https://github.com/shiyinzhang/Inside-Outside-Guidance
数据集:https://github.com/shiyinzhang/Pixel-ImageNet
==============================================================
AOWS: Adaptive and optimal network width search with latency constraints
论文:https://arxiv.org/abs/2005.10481
代码:https://github.com/bermanmaxim/AOWS
Densely Connected Search Space for More Flexible Neural Architecture Search
论文:https://arxiv.org/abs/1906.09607
代码:https://github.com/JaminFong/DenseNAS
MTL-NAS: Task-Agnostic Neural Architecture Search towards General-Purpose Multi-Task Learning
论文:https://arxiv.org/abs/2003.14058
代码:https://github.com/bhpfelix/MTLNAS
FBNetV2: Differentiable Neural Architecture Search for Spatial and Channel Dimensions
论文下载链接:https://arxiv.org/abs/2004.05565
代码:https://github.com/facebookresearch/mobile-vision
Neural Architecture Search for Lightweight Non-Local Networks
论文:https://arxiv.org/abs/2004.01961
代码:https://github.com/LiYingwei/AutoNL
Rethinking Performance Estimation in Neural Architecture Search
论文:https://arxiv.org/abs/2005.09917
代码:https://github.com/zhengxiawu/rethinking_performance_estimation_in_NAS
解读1:https://www.zhihu.com/question/372070853/answer/1035234510
解读2:https://zhuanlan.zhihu.com/p/111167409
CARS: Continuous Evolution for Efficient Neural Architecture Search
论文:https://arxiv.org/abs/1909.04977
代码(即将开源):https://github.com/huawei-noah/CARS
==============================================================
SEAN: Image Synthesis with Semantic Region-Adaptive Normalization
论文:https://arxiv.org/abs/1911.12861
代码:https://github.com/ZPdesu/SEAN
Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation
论文地址:http://openaccess.thecvf.com/content_CVPR_2020/html/Chen_Reusing_Discriminators_for_Encoding_Towards_Unsupervised_Image-to-Image_Translation_CVPR_2020_paper.html
代码地址:https://github.com/alpc91/NICE-GAN-pytorch
Distribution-induced Bidirectional Generative Adversarial Network for Graph Representation Learning
论文:https://arxiv.org/abs/1912.01899
代码:https://github.com/SsGood/DBGAN
PSGAN: Pose and Expression Robust Spatial-Aware GAN for Customizable Makeup Transfer
论文:https://arxiv.org/abs/1909.06956
代码:https://github.com/wtjiang98/PSGAN
Semantically Mutil-modal Image Synthesis
主页:http://seanseattle.github.io/SMIS
论文:https://arxiv.org/abs/2003.12697
代码:https://github.com/Seanseattle/SMIS
Unpaired Portrait Drawing Generation via Asymmetric Cycle Mapping
论文:https://yiranran.github.io/files/CVPR2020_Unpaired%20Portrait%20Drawing%20Generation%20via%20Asymmetric%20Cycle%20Mapping.pdf
代码:https://github.com/yiranran/Unpaired-Portrait-Drawing
Learning to Cartoonize Using White-box Cartoon Representations
论文:https://github.com/SystemErrorWang/White-box-Cartoonization/blob/master/paper/06791.pdf
主页:https://systemerrorwang.github.io/White-box-Cartoonization/
代码:https://github.com/SystemErrorWang/White-box-Cartoonization
解读:https://zhuanlan.zhihu.com/p/117422157
Demo视频:https://www.bilibili.com/video/av56708333
GAN Compression: Efficient Architectures for Interactive Conditional GANs
论文:https://arxiv.org/abs/2003.08936
代码:https://github.com/mit-han-lab/gan-compression
Watch your Up-Convolution: CNN Based Generative Deep Neural Networks are Failing to Reproduce Spectral Distributions
论文:https://arxiv.org/abs/2003.01826
代码:https://github.com/cc-hpc-itwm/UpConv
================================================================
High-Order Information Matters: Learning Relation and Topology for Occluded Person Re-Identification
论文:http://openaccess.thecvf.com/content_CVPR_2020/html/Wang_High-Order_Information_Matters_Learning_Relation_and_Topology_for_Occluded_Person_CVPR_2020_paper.html
代码:https://github.com/wangguanan/HOReID
COCAS: A Large-Scale Clothes Changing Person Dataset for Re-identification
论文:https://arxiv.org/abs/2005.07862
数据集:暂无
Transferable, Controllable, and Inconspicuous Adversarial Attacks on Person Re-identification With Deep Mis-Ranking
论文:https://arxiv.org/abs/2004.04199
代码:https://github.com/whj363636/Adversarial-attack-on-Person-ReID-With-Deep-Mis-Ranking
Pose-guided Visible Part Matching for Occluded Person ReID
论文:https://arxiv.org/abs/2004.00230
代码:https://github.com/hh23333/PVPM
Weakly supervised discriminative feature learning with state information for person identification
论文:https://arxiv.org/abs/2002.11939
代码:https://github.com/KovenYu/state-information
==========================================================================
PointASNL: Robust Point Clouds Processing using Nonlocal Neural Networks with Adaptive Sampling
论文:https://arxiv.org/abs/2003.00492
代码:https://github.com/yanx27/PointASNL
Global-Local Bidirectional Reasoning for Unsupervised Representation Learning of 3D Point Clouds
论文下载链接:https://arxiv.org/abs/2003.12971
代码:https://github.com/raoyongming/PointGLR
Grid-GCN for Fast and Scalable Point Cloud Learning
论文:https://arxiv.org/abs/1912.02984
代码:https://github.com/Xharlie/Grid-GCN
FPConv: Learning Local Flattening for Point Convolution
论文:https://arxiv.org/abs/2002.10701
代码:https://github.com/lyqun/FPConv
PointAugment: an Auto-Augmentation Framework for Point Cloud Classification
论文:https://arxiv.org/abs/2002.10876
代码(即将开源): https://github.com/liruihui/PointAugment/
RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds
论文:https://arxiv.org/abs/1911.11236
代码:https://github.com/QingyongHu/RandLA-Net
解读:https://zhuanlan.zhihu.com/p/105433460
Weakly Supervised Semantic Point Cloud Segmentation:Towards 10X Fewer Labels
论文:https://arxiv.org/abs/2004.04091
代码:https://github.com/alex-xun-xu/WeakSupPointCloudSeg
PolarNet: An Improved Grid Representation for Online LiDAR Point Clouds Semantic Segmentation
论文:https://arxiv.org/abs/2003.14032
代码:https://github.com/edwardzhou130/PolarSeg
Learning to Segment 3D Point Clouds in 2D Image Space
论文:https://arxiv.org/abs/2003.05593
代码:https://github.com/WPI-VISLab/Learning-to-Segment-3D-Point-Clouds-in-2D-Image-Space
PointGroup: Dual-Set Point Grouping for 3D Instance Segmentation
论文:https://arxiv.org/abs/2004.01658
代码:https://github.com/Jia-Research-Lab/PointGroup
Feature-metric Registration: A Fast Semi-supervised Approach for Robust Point Cloud Registration without Correspondences
论文:https://arxiv.org/abs/2005.01014
代码:https://github.com/XiaoshuiHuang/fmr
D3Feat: Joint Learning of Dense Detection and Description of 3D Local Features
论文:https://arxiv.org/abs/2003.03164
代码:https://github.com/XuyangBai/D3Feat
RPM-Net: Robust Point Matching using Learned Features
论文:https://arxiv.org/abs/2003.13479
代码:https://github.com/yewzijian/RPMNet
Cascaded Refinement Network for Point Cloud Completion
论文:https://arxiv.org/abs/2004.03327
代码:https://github.com/xiaogangw/cascaded-point-completion
P2B: Point-to-Box Network for 3D Object Tracking in Point Clouds
论文:https://arxiv.org/abs/2005.13888
代码:https://github.com/HaozheQi/P2B
An Efficient PointLSTM for Point Clouds Based Gesture Recognition
论文:http://openaccess.thecvf.com/content_CVPR_2020/html/Min_An_Efficient_PointLSTM_for_Point_Clouds_Based_Gesture_Recognition_CVPR_2020_paper.html
代码:https://github.com/Blueprintf/pointlstm-gesture-recognition-pytorch
=============================================================
CurricularFace: Adaptive Curriculum Learning Loss for Deep Face Recognition
论文:https://arxiv.org/abs/2004.00288
代码:https://github.com/HuangYG123/CurricularFace
Learning Meta Face Recognition in Unseen Domains
论文:https://arxiv.org/abs/2003.07733
代码:https://github.com/cleardusk/MFR
解读:https://mp.weixin.qq.com/s/YZoEnjpnlvb90qSI3xdJqQ
Searching Central Difference Convolutional Networks for Face Anti-Spoofing
论文:https://arxiv.org/abs/2003.04092
代码:https://github.com/ZitongYu/CDCN
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数Python工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年Python开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Python开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新
如果你觉得这些内容对你有帮助,可以添加V获取:vip1024c (备注Python)
一、Python所有方向的学习路线
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。
二、Python必备开发工具
工具都帮大家整理好了,安装就可直接上手!
三、最新Python学习笔记
当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
四、Python视频合集
观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
五、实战案例
纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
六、面试宝典
一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
ca.png)
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Python开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新
如果你觉得这些内容对你有帮助,可以添加V获取:vip1024c (备注Python)
[外链图片转存中…(img-JDIC4zYc-1712432917641)]
一、Python所有方向的学习路线
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。
二、Python必备开发工具
工具都帮大家整理好了,安装就可直接上手!
三、最新Python学习笔记
当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
四、Python视频合集
观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
五、实战案例
纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
六、面试宝典
一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
[外链图片转存中…(img-V1q7Nh39-1712432917643)]
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。