当前位置:   article > 正文

elasticsearch 查询超10000的解决方案_es分页查询超过10000

es分页查询超过10000

前言

默认情况下,Elasticsearch集群中每个分片的搜索结果数量限制为10000。这是为了避免潜在的性能问题。

但是我们 在实际工作过程中时常会遇到 需要深度分页,以及查询批量数据更新的情况

问题:当请求form + size >10000 时,请求直接报错

在这里插入图片描述

1:修改max_result_window 参数(不推荐)

在此方案中,我们建议仅限于测试用,生产禁用,毕竟当数据量大的时候,过大的数据量可能导致es的内存溢出,直接崩掉,一年绩效白干。

PUT wkl_test/_settings
{
   "index":{
        "max_result_window":2147483647
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

查看索引的 settings
在这里插入图片描述
重新查数据:

在这里插入图片描述

2:使用游标 scroll API

使用scroll API:scroll API可以帮助我们在不加载所有数据的情况下获取所有结果。它会在后台执行查询以获取滚动ID,并将其用于进行后续查询。这样就可以一次性获取所有结果,而不必担心限制

ES语句查询

在游标方案中,我们只需要在第一次拿到游标id,之后通过游标就能唯一确定查询,在这个查询中通过我们指定的 size 移动游标,具体操作看看下面实操。

  • 游标查询,设置游标有效时间,有效时间内,游标都可以使用,过期就不行了
GET wkl_test/_search?scroll=5m
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "seq": {
        "order": "asc"
      }
    }
  ],
  "size": 200
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 上面操作中通过游标的结果返回
    在这里插入图片描述
  • 之后将_scroll_id 复制到窗口,就可以不端通过这个_scroll_id 进行之前设置的页数不断翻页
    以此类推,后面每次滚屏都把前一个的scroll_id复制过来。注意到,后续请求时没有了index信息,size信息等,这些都在初始请求中,只需要使用scroll_id和scroll两个参数即可。
    在这里插入图片描述
    注意,此时游标移动了,所以我们可以通过游标的方式不断后移,直到移动到我们想要的 from+size 范围内。再次点击
    在这里插入图片描述

java实现


@Test
    public void testScroll(){
        RestHighLevelClient restHighLevelClient ;
        BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery();
        boolQueryBuilder.mustNot(QueryBuilders.existsQuery("seq"));

        try {
            //滚动查询的Scroll,设置请求滚动时间窗口时间
            Scroll scroll = new Scroll(TimeValue.timeValueMillis(180000));

            SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
            //加入query语句
            sourceBuilder.query(boolQueryBuilder);
            //每次滚动的长度
            sourceBuilder.size(SIZE);
            //加入排序字段
            sourceBuilder.sort("id", SortOrder.DESC);
            //构建searchRequest
            //加入scroll和构造器
            SearchRequest searchRequest = new SearchRequest()
                    .indices("wkl_test")
                    .source(sourceBuilder)
                    .scroll(scroll);
            //存储scroll的list
            List<String> scrollIdList = new ArrayList<>();
            //执行首次检索
            SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);
            //首次检索返回scrollId,用于下一次的滚动查询
            String scrollId = searchResponse.getScrollId();
            //拿到hits结果
            SearchHit[] hits = searchResponse.getHits().getHits();
            long value = searchResponse.getHits().getTotalHits().value;
            //保存返回结果List大小
            Long resultSize = 0L;
            scrollIdList.add(scrollId);
            try {
                //滚动查询将SearchHit封装到result中
                while (ArrayUtils.isNotEmpty(hits) && hits.length > 0) {
                    BulkRequest bulkRequest = new BulkRequest();
                    JSONArray esArray = new JSONArray();
                    for (SearchHit hit : hits) {
                        String sourceAsString = hit.getSourceAsString();
                        String index = hit.getIndex();
                        JSONObject jsonObject = JSONObject.parseObject(sourceAsString);
                        String seq = jsonObject.getString("seq");
                        if(StringUtils.isBlank(seq) ){
                            esArray.add(jsonObject);
                            String uuid = jsonObject.getString("id");
                            jsonObject.put("is_del",1);
                            bulkRequest.add(new UpdateRequest(index, uuid).doc(jsonObject));
                        }
                    }
                    resultSize = resultSize+hits.length;

                    //发送请求
                    //实时更新
                    bulkRequest.setRefreshPolicy(WriteRequest.RefreshPolicy.IMMEDIATE);
                    BulkResponse bulk = restHighLevelClient.bulk(bulkRequest, RequestOptions.DEFAULT);
                    System.out.println(bulk.getTook()+"-------"+bulk.getItems().length);

                    //说明滚动完了,返回结果即可
                    if (resultSize > 20000) {
                        break;
                    }
                    //继续滚动,根据上一个游标,得到这次开始查询位置
                    SearchScrollRequest searchScrollRequest = new SearchScrollRequest(scrollId);
                    searchScrollRequest.scroll(scroll);
                    //得到结果
                    SearchResponse searchScrollResponse = restHighLevelClient.scroll(searchScrollRequest, RequestOptions.DEFAULT);
                    //定位游标
                    scrollId = searchScrollResponse.getScrollId();
                    hits = searchScrollResponse.getHits().getHits();
                    scrollIdList.add(scrollId);
                }
                System.out.println("----彻底结束了-----");
            } finally {
                //清理scroll,释放资源
                ClearScrollRequest clearScrollRequest = new ClearScrollRequest();
                clearScrollRequest.setScrollIds(scrollIdList);
                restHighLevelClient.clearScroll(clearScrollRequest, RequestOptions.DEFAULT);
            }
        } catch (Exception e) {
            throw new RuntimeException(e);
        }
    }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86

scroll API 的优缺点和总结

优缺点:

  • scroll查询的相应数据是非实时的,如果遍历过程中插入新的数据,是查询不到的。并且保留上下文需要足够的堆内存空间。
  • 相比于 from/size 和 search_after 返回一页数据,Scroll API 可用于从单个搜索请求中检索大量结果。但是 scroll 滚动遍历查询是非实时的,数据量大的时候,响应时间可能会比较长

适用场景

  • 全量或数据量很大时遍历结果数据,而非分页查询。
  • scroll方案基于快照,不能用在高实时性的场景下,建议用在类似数据导出场景下使用

3: search_after + PIT 深度查询

  • Search_after是 ES 5 新引入的一种分页查询机制,其原理几乎就是和scroll一样,因此代码也几乎是一样的。
  • 官方文档说明不再建议使用scroll滚动分页和from size分页,建议使用search_after
  • search_after 分页的方式和 scroll 搜索有一些显著的区别,首先它是根据上一页的最后一条数据来确定下一页的位置,同时在分页请求的过程中,如果有索引数据的增删改查,这些变更也会实时的反映到游标上。

不带PIT

ES语句实现

检索第一页的查询如下所示:

GET wkl_test/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "seq": {
        "order": "asc"
      }
    }
  ],
  "size": 200
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

上述请求的结果包括每个文档的 sort 值数组。
在这里插入图片描述

这些 sort 值可以与 search_after 参数一起使用,以开始返回在这个结果列表之后的任何文档。例如,我们可以使用上一个文档的 sort 值并将其传递给 search_after 以检索下一页结果:

在这里插入图片描述

Java 实现

@Test
    public void testSearchAfter() throws IOException {
        RestHighLevelClient restHighLevelClient = es7UtilApi.getRestHighLevelClient();

        MatchAllQueryBuilder matchAllQueryBuilder = QueryBuilders.matchAllQuery();

        SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
        searchSourceBuilder.query(matchAllQueryBuilder);
        searchSourceBuilder.from(0);
        searchSourceBuilder.size(200);
        searchSourceBuilder.sort("seq", SortOrder.ASC);
        searchSourceBuilder.trackTotalHits(true);

        SearchRequest searchRequest = new SearchRequest()
                .indices("wkl_test")
                .source(searchSourceBuilder);

        SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);
        SearchHits hits = searchResponse.getHits();
        long value = hits.getTotalHits().value;
        System.out.println("查询到记录数=" + value);

        List<JSONObject> list = new ArrayList<>();
        SearchHit[] searchHists = hits.getHits();
        Object[] sortValues = searchHists[searchHists.length - 1].getSortValues();
        if (searchHists.length > 0) {
            for (SearchHit hit : searchHists) {
                String sourceAsString = hit.getSourceAsString();
                JSONObject jsonObject = JSON.parseObject(sourceAsString);
                jsonObject.put("_id", hit.getId());
                list.add(jsonObject);
            }
        }

        //往后的每次请求都携带上一次的sort_id进行访问。
        while (ArrayUtils.isNotEmpty(searchHists) && searchHists.length > 0){
            searchSourceBuilder.searchAfter(sortValues);
            searchRequest.source(searchSourceBuilder);
            SearchResponse searchResponseAfter = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);
            hits = searchResponseAfter.getHits();
            searchHists = hits.getHits();
            sortValues = searchHists[searchHists.length - 1].getSortValues();
            if (searchHists.length > 0) {
                for (SearchHit hit : searchHists) {
                    String sourceAsString = hit.getSourceAsString();
                    JSONObject jsonObject = JSON.parseObject(sourceAsString);
                    jsonObject.put("_id", hit.getId());
                    list.add(jsonObject);
                }
            }
            if(list.size()>20000){
                break;
            }
            System.out.println("-----彻底结束了-------");
        }

    }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57

问题

「优点:」

  • 无状态查询,可以防止在查询过程中,数据的变更无法及时反映到查询中。

  • 不需要维护scroll_id,不需要维护快照,因此可以避免消耗大量的资源。

「缺点:」

  • 由于无状态查询,因此在查询期间的变更可能会导致跨页面的不一值。

  • 排序顺序可能会在执行期间发生变化,具体取决于索引的更新和删除。

  • 至少需要制定一个唯一的不重复字段来排序。

  • 它不适用于大幅度跳页查询,或者全量导出,对第N页的跳转查询相当于对es不断重复的执行N次search after,而全量导出则是在短时间内执行大量的重复查询。

带PIT

关于PIT

  • 在7.*版本中,ES官方不再推荐使用Scroll方法来进行深分页,而是推荐使用带PIT的search_after来进行查询;

  • 从7.*版本开始,您可以使用SEARCH_AFTER参数通过上一页中的一组排序值检索下一页命中。

  • 使用SEARCH_AFTER需要多个具有相同查询和排序值的搜索请求。

  • 如果这些请求之间发生刷新,则结果的顺序可能会更改,从而导致页面之间的结果不一致。
    为防止出现这种情况,您可以创建一个时间点(PIT)来在搜索过程中保留当前索引状态。

ES语句实现

1:生成pit
#keep_alive必须要加上,它表示这个pit能存在多久,这里设置的是1分钟
POST wkl_test/_pit?keep_alive=1m
  • 1
  • 2

在这里插入图片描述

2:在搜索请求中指定PIT:

在每个搜索请求中添加 keep_alive 参数来延长 PIT 的保留期,相当于是重置了一下时间


GET _search
{
  "query": {
    "match_all": {}
  },
  "pit":{
    "id":"t_yxAwEId2tsX3Rlc3QWU0hzbEJkYWNTVEd0ZGRoN0xsQVVNdwAWUGQtaXJpT0xTa2VUN0RGLXZfTlBvZwAAAAAACHG1fxY1UWNKX1RHOFMybXBaV20zbWx3enp3ARZTSHNsQmRhY1NUR3RkZGg3TGxBVU13AAA=",
    "keep_alive":"5m"
  },
  "sort": [
    {
      "seq": {
        "order": "asc"
      }
    }
  ],
  "size": 200
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19

在这里插入图片描述

3:删除PIT
DELETE _pit
{
 "id":"t_yxAwEId2tsX3Rlc3QWU0hzbEJkYWNTVEd0ZGRoN0xsQVVNdwAWUGQtaXJpT0xTa2VUN0RGLXZfTlBvZwAAAAAACHG1fxY1UWNKX1RHOFMybXBaV20zbWx3enp3ARZTSHNsQmRhY1NUR3RkZGg3TGxBVU13AAA="
}
  • 1
  • 2
  • 3
  • 4

在这里插入图片描述

总结

  • 如果数据量小(from+size在10000条内),或者只关注结果集的TopN数据,可以使用from/size 分页,简单粗暴

  • 数据量大,深度翻页,后台批处理任务(数据迁移)之类的任务,使用 scroll 方式

  • 数据量大,深度翻页,用户实时、高并发查询需求,使用 search after 方式

本文内容由网友自发贡献,转载请注明出处:https://www.wpsshop.cn/w/IT小白/article/detail/920279
推荐阅读
相关标签
  

闽ICP备14008679号