赞
踩
设置你需要用的翻译软件
打开自动开启双语字幕
仓库:https://github.com/Czi24/Awesome-MLLM-LLM-Colab
Prompt Compression and Query Optimization | 提示压缩与查询优化 |
---|---|
Introduction | 介绍 |
Vanilla Vector Search | 基础向量搜索 |
Filtering With Metadata | 元数据过滤 |
Projections | 投影 |
Boosting | 提升 |
Prompt Compression | 提示压缩 |
Conclusion | 结论 |
Appendix-Tips and Help | 附录-提示和帮助 |
Carbon Aware Computing for GenAI developers | 面向生成式AI开发人员的碳感知计算 |
---|---|
Introduction | 介绍 |
The Carbon Footprint of Machine Learning | 机器学习的碳足迹 |
Exploring Carbon Intensity on the Grid | 探索电网中的碳强度 |
Training Models in Low Carbon Regions | 在低碳地区训练模型 |
Using Real-Time Energy Data for Low-Carbon Training | 使用实时能源数据进行低碳训练 |
Understanding your Google Cloud Footprint | 了解你的谷歌云碳足迹 |
Next steps | 下一步 |
Conclusion | 结论 |
Google Cloud Setup | 谷歌云设置 |
Function-calling and data extraction with LLMs | 使用LLMs进行函数调用和数据提取 |
---|---|
Introduction | 介绍 |
What is function calling | 什么是函数调用 |
Function calling variations | 函数调用的变体 |
Interfacing with external tools | 与外部工具的接口 |
Structured Extraction | 结构化提取 |
Applications | 应用 |
Course project dialog processing | 课程项目对话处理 |
Conclusion | 结论 |
Building Your Own Database Agent | 构建你自己的数据库代理 |
---|---|
Introduction | 介绍 |
Your First AI Agent | 你的第一个AI代理 |
Interacting with a CSV Data | 处理CSV数据 |
Connecting to a SQL Database | 连接SQL数据库 |
Azure OpenAI Function Calling Feature | Azure OpenAI函数调用功能 |
Leveraging Assistants API for SQL Databases | 利用助手API处理SQL数据库 |
Conclusion | 结论 |
AI Agents in LangGraph | LangGraph中的AI代理 |
---|---|
Introduction | 介绍 |
Build an Agent from Scratch | 从头构建代理 |
LangGraph Components | LangGraph组件 |
Agentic Search Tools | 代理搜索工具 |
Persistence and Streaming | 持久性与流媒体 |
Human in the loop | 人在回路中 |
Essay Writer | 文章写作 |
LangChain Resources | LangChain资源 |
Conclusion | 结论 |
AI Agentic Design Patterns with AutoGen | 使用AutoGen的AI代理设计模式 |
---|---|
Introduction | 介绍 |
Multi-Agent Conversation and Stand-up Comedy | 多代理对话与单口喜剧 |
Sequential Chats and Customer Onboarding | 连续聊天与客户入职 |
Reflection and Blogpost Writing | 反思与博客写作 |
Tool Use and Conversational Chess | 工具使用与对话象棋 |
Coding and Financial Analysis | 编码与财务分析 |
Planning and Stock Report Generation | 规划与股票报告生成 |
Conclusion | 结论 |
Introduction to on-device AI | 设备端AI简介 |
---|---|
Introduction | 介绍 |
Why on-device | 为什么选择设备端AI |
Deploying Segmentation Models On-Device | 部署设备端分割模型 |
Preparing for on-device deployment | 准备设备端部署 |
Quantizing Models | 量化模型 |
Device Integration | 设备集成 |
Conclusion | 结论 |
Appendix - Building the App | 附录 - 构建应用 |
Appendix - Tips and Help | 附录 - 提示和帮助 |
Multi AI Agent Systems with crewAI | 使用crewAI的多AI代理系统 |
---|---|
Introduction | 介绍 |
Overview | 概览 |
AI Agents | AI代理 |
Create agents to research and write an article (code) | 创建代理进行研究和写文章(代码) |
Key elements of AI agents | AI代理的关键要素 |
Multi agent customer support automation (code) | 多代理客户支持自动化(代码) |
Mental framework for agent creation | 代理创建的思维框架 |
Key elements of agent tools | 代理工具的关键要素 |
Tools for a customer outreach campaign (code) | 客户外展活动的工具(代码) |
Recap of tools | 工具回顾 |
Key elements of well defined tasks | 定义明确任务的关键要素 |
Automate event planning (code) | 自动化事件规划(代码) |
Recap on tasks | 任务回顾 |
Multi agent collaboration | 多代理协作 |
Multi agent collaboration for financial analysis (code) | 多代理财务分析协作(代码) |
Build a crew to tailor job applications (code) | 创建团队定制工作申请(代码) |
Next steps with AI agent systems | AI代理系统的下一步 |
Conclusion | 结论 |
How to get your completion badge | 如何获得完成徽章 |
Building Multimodal Search and RAG | 构建多模态搜索和RAG |
---|---|
Introduction | 介绍 |
Overview of Multimodality | 多模态概述 |
Multimodal Search | 多模态搜索 |
Large Multimodal Models (LMMs) | 大型多模态模型(LMMs) |
Multimodal RAG (MM-RAG) | 多模态RAG(MM-RAG) |
Industry Applications | 行业应用 |
Multimodal Recommender System | 多模态推荐系统 |
Conclusion | 结论 |
Appendix - Tips and Help | 附录 - 提示和帮助 |
Building Agentic RAG with Llamaindex | 使用Llamaindex构建Agentic RAG |
---|---|
Introduction | 介绍 |
Router Query Engine | 路由查询引擎 |
Tool Calling | 工具调用 |
Building an Agent Reasoning Loop | 构建代理推理循环 |
Building a Multi-Document Agent | 构建多文档代理 |
Conclusion | 结论 |
Quantization in Depth | 深入量化 |
---|---|
Introduction | 介绍 |
Overview | 概览 |
Quantize and De-quantize a Tensor | 量化和反量化张量 |
Get the Scale and Zero Point | 获取比例和零点 |
Symmetric vs Asymmetric Mode | 对称模式与非对称模式 |
Finer Granularity for more Precision | 更精细的粒度以提高精度 |
Per Channel Quantization | 每通道量化 |
Per Group Quantization | 每组量化 |
Quantizing Weights & Activations for Inference | 推理的权重和激活量化 |
Custom Build an 8-Bit Quantizer | 自定义构建8位量化器 |
Replace PyTorch layers with Quantized Layers | 用量化层替换PyTorch层 |
Quantize any Open Source PyTorch Model | 量化任何开源PyTorch模型 |
Load your Quantized Weights from HuggingFace Hub | 从HuggingFace Hub加载量化权重 |
Weights Packing | 权重打包 |
Packing 2-bit Weights | 打包2位权重 |
Unpacking 2-Bit Weights | 解包2位权重 |
Beyond Linear Quantization | 超越线性量化 |
Conclusion | 结论 |
Prompt Engineering for Vision Models | 视觉模型的提示工程 |
---|---|
Introduction | 介绍 |
Overview | 概览 |
Image Segmentation | 图像分割 |
Object Detection | 目标检测 |
Image Generation | 图像生成 |
Fine-tuning | 微调 |
Conclusion | 结论 |
Appendix | 附录 |
Getting Started with Mistral | 入门Mistral |
---|---|
Introduction | 介绍 |
Overview | 概览 |
Prompting | 提示 |
Model Selection | 模型选择 |
Function Calling | 函数调用 |
RAG from Scratch | 从零开始构建RAG |
Chatbot | 聊天机器人 |
Conclusion | 结论 |
Quantization Fundamentals with Hugging Face | Hugging Face的量化基础 |
---|---|
Introduction | 介绍 |
Handling Big Models | 处理大模型 |
Data Types and Sizes | 数据类型和大小 |
Loading Models by data type | 按数据类型加载模型 |
Quantization Theory | 量化理论 |
Quantization of LLMs | LLMs的量化 |
Conclusion | 结论 |
Preprocessing Unstructured Data for LLM Applications | 预处理LLM应用程序的非结构化数据 |
---|---|
Introduction | 介绍 |
Overview of LLM Data Preprocessing | LLM数据预处理概述 |
Normalizing the Content | 内容规范化 |
Metadata Extraction and Chunking | 元数据提取和分块 |
Preprocessing PDFs and Images | 预处理PDF和图像 |
Extracting Tables | 提取表格 |
Build Your Own RAG Bot | 构建你自己的RAG机器人 |
Conclusion | 结论 |
Appendix - Tips and Help | 附录 - 提示和帮助 |
Red Teaming LLM Applications | LLM应用程序的红队测试 |
---|---|
Introduction | 介绍 |
Overview of LLM Vulnerabilities | LLM漏洞概述 |
Red Teaming LLMs | 红队测试LLMs |
Red Teaming at Scale | 大规模红队测试 |
Red Teaming LLMs with LLMs | 用LLMs进行红队测试 |
A Full Red Teaming Assessment | 全面的红队评估 |
Conclusion | 结论 |
JavaScript RAG Web Apps with LlamaIndex | 使用LlamaIndex的JavaScript RAG Web应用 |
---|---|
Introduction | 介绍 |
Getting started with RAG | 入门RAG |
Build a full-stack web app | 构建全栈Web应用 |
Advanced queries with Agents | 使用代理的高级查询 |
Production-ready techniques | 生产就绪技术 |
Conclusion | 结论 |
Efficiently Serving LLMs | 高效服务LLMs |
---|---|
Introduction | 介绍 |
Text Generation | 文本生成 |
Batching | 批处理 |
Continuous Batching | 连续批处理 |
Quantization | 量化 |
Low-Rank Adaptation | 低秩适应 |
Multi-LoRA inference | 多LoRA推理 |
LoRAX | LoRAX |
Conclusion | 结论 |
Knowledge Graphs for RAG | RAG的知识图谱 |
---|---|
Introduction | 介绍 |
Knowledge Graph Fundamentals | 知识图谱基础 |
Querying Knowledge Graphs | 查询知识图谱 |
Preparing Text for RAG | 为RAG准备文本 |
Constructing a Knowledge Graph from Text Documents | 从文本文件构建知识图谱 |
Adding Relationships to the SEC Knowledge Graph | 向SEC知识图谱添加关系 |
Expanding the SEC Knowledge Graph | 扩展SEC知识图谱 |
Chatting with the Knowledge Graph | 与知识图谱聊天 |
Conclusion | 结论 |
Open Source Models with Hugging Face | 使用Hugging Face的开源模型 |
---|---|
Introduction | 介绍 |
Selecting models | 选择模型 |
Natural Language Processing (NLP) | 自然语言处理(NLP) |
Translation and Summarization | 翻译和摘要 |
Sentence Embeddings | 句子嵌入 |
Zero-Shot Audio Classification | 零样本音频分类 |
Automatic Speech Recognition | 自动语音识别 |
Text to Speech | 文本转语音 |
Object Detection | 目标检测 |
Image Segmentation | 图像分割 |
Image Retrieval | 图像检索 |
Image Captioning | 图像标题生成 |
Multimodal Visual Question Answering | 多模态视觉问答 |
Zero-Shot Image Classification | 零样本图像分类 |
Deployment | 部署 |
Conclusion | 结论 |
Prompt Engineering with Llama 2&3 | 使用Llama 2&3进行提示工程 |
---|---|
Introduction | 介绍 |
Overview of Llama Models | Llama模型概述 |
Getting Started with Llama 2 & 3 | Llama 2&3入门 |
Multi-turn Conversations | 多轮对话 |
Prompt Engineering Techniques | 提示工程技术 |
Comparing Different Llama 2 & 3 models | 比较不同的Llama 2&3模型 |
Code Llama | 代码Llama |
Llama Guard | Llama卫士 |
Walkthrough of Llama Helper Function (Optional) | Llama助手函数演练(可选) |
Conclusion | 结论 |
Serverless LLM Apps Amazon Bedrock | 使用Amazon Bedrock的无服务器LLM应用 |
---|---|
Introduction | 介绍 |
Your first generations with Amazon Bedrock | 使用Amazon Bedrock生成第一个结果 |
Summarize an audio file | 总结音频文件 |
Enable logging | 启用日志记录 |
Deploy an AWS Lambda function | 部署AWS Lambda函数 |
Event-driven generation | 事件驱动生成 |
Conclusion | 结论 |
Building Applications with Vector Databases | 使用向量数据库构建应用 |
---|---|
Introduction | 介绍 |
Semantic Search | 语义搜索 |
Retrieval Augmented Generation (RAG) | 检索增强生成(RAG) |
Recommender Systems | 推荐系统 |
Hybrid Search | 混合搜索 |
Facial Similarity Search | 面部相似性搜索 |
Anomaly Detection | 异常检测 |
Conclusion | 结论 |
Automated Testing for LLMOps | LLMOps的自动化测试 |
---|---|
Introduction | 介绍 |
Introduction to Continuous Integration (CI) | 持续集成(CI)介绍 |
Overview of Automated Evals | 自动评估概述 |
Automating Model-Graded Evals | 自动化模型评分评估 |
Comprehensive Testing Framework | 综合测试框架 |
Conclusion | 结论 |
Optional: Exploring the CircleCI config file | 可选:探索CircleCI配置文件 |
LLMOps | LLMOps |
---|---|
Introduction | 介绍 |
The Fundamentals | 基础知识 |
Data Preparation | 数据准备 |
Automation and Orchestration with Pipelines | 流水线的自动化和编排 |
Prediction, Prompts, Safety | 预测、提示、安全 |
Conclusion | 结论 |
Next Step | 下一步 |
Build LLM Apps with LangChain.js | 使用LangChain.js构建LLM应用程序 |
---|---|
Introduction | 介绍 |
Building Blocks | 构建模块 |
Loading and preparing data | 加载和准备数据 |
Vectorstores and embeddings | 向量存储和嵌入 |
Question answering | 问答 |
Conversational question answering | 对话问答 |
Shipping as a web API | 作为Web API发布 |
Conclusion | 结论 |
Next Step | 下一步 |
Advanced Retrieval for AI with Chroma | 使用Chroma进行高级检索 |
---|---|
Introduction | 介绍 |
Overview of embeddings-based retrieval | 基于嵌入的检索概述 |
Pitfalls of retrieval - when simple vector search fails | 检索的陷阱 - 当简单向量搜索失败时 |
Query Expansion | 查询扩展 |
Cross-encoder re-ranking | 交叉编码器重新排序 |
Embedding adaptors | 嵌入适配器 |
Other Techniques | 其他技术 |
Reinforcement Learning From Human Feedback | 从人类反馈中进行强化学习 |
---|---|
Introduction | 介绍 |
How does RLHF work | RLHF如何工作 |
Datasets for RL training | 强化学习的数据集 |
Tune an LLM with RLHF | 使用RLHF调整LLM |
Evaluate the tuned model | 评估调整后的模型 |
Google Cloud Setup | Google Cloud设置 |
Conclusion | 结论 |
Building and Evaluating Advanced RAG | 构建和评估高级RAG |
---|---|
Introduction | 介绍 |
Advanced RAG Pipeline | 高级RAG流水线 |
RAG Triad of metrics | RAG的三重指标 |
Sentence-window retrieval | 句子窗口检索 |
Auto-merging retrieval | 自动合并检索 |
Conclusion | 结论 |
Quality and Safety for LLM Applications | LLM应用的质量和安全 |
---|---|
Introduction | 介绍 |
Overview | 概览 |
Hallucinations | 幻觉 |
Data Leakage | 数据泄露 |
Refusals and prompt injections | 拒绝和提示注入 |
Passive and active monitoring | 被动和主动监控 |
Conclusion | 结论 |
Vector Databases: from Embeddings to Applications | 向量数据库:从嵌入到应用 |
---|---|
Introduction | 介绍 |
How to Obtain Vector Representations of Data | 如何获取数据的向量表示 |
Search for Similar Vectors | 搜索相似向量 |
Approximate nearest neighbours | 近似最近邻 |
Vector Databases | 向量数据库 |
Sparse, Dense, and Hybrid Search | 稀疏、密集和混合搜索 |
Application - Multilingual Search | 应用 - 多语言搜索 |
Conclusion | 结论 |
Functions, Tools and Agents with LangChain | 使用LangChain的函数、工具和代理 |
---|---|
Introduction | 介绍 |
OpenAI Function Calling | OpenAI函数调用 |
LangChain Expression Language (LCEL) | LangChain表达语言(LCEL) |
OpenAI Function Calling in LangChain | 在LangChain中调用OpenAI函数 |
Tagging and Extraction | 标记和提取 |
Tools and Routing | 工具和路由 |
Conversational Agent | 会话代理 |
Conclusion | 结论 |
Pair Programming with a Large Language Model | 使用大型语言模型进行结对编程 |
---|---|
Introduction | 介绍 |
Getting Started | 入门 |
Using a String Template | 使用字符串模板 |
Pair Programming Scenarios | 结对编程场景 |
Technical Debt | 技术债务 |
Conclusion | 结论 |
Understanding and Applying Text Embeddings | 理解和应用文本嵌入 |
---|---|
Introduction | 介绍 |
Getting Started With Text Embeddings | 文本嵌入入门 |
Understanding Text Embeddings | 理解文本嵌入 |
Visualizing Embeddings | 可视化嵌入 |
Applications of Embeddings | 嵌入的应用 |
Text Generation with Vertex AI | 使用Vertex AI生成文本 |
Building a Q&A System Using Semantic Search | 使用语义搜索构建问答系统 |
Optional - Google Cloud Setup | 可选 - Google Cloud设置 |
Conclusion | 结论 |
How Business Thinkers Can Start Building AI Plugins With Semantic Kernel | 商业思考者如何使用语义内核开始构建AI插件 |
---|---|
Introduction | 介绍 |
Semantic Kernel is Like Your AI Cooking Kitchen | 语义内核就像你的AI烹饪厨房 |
Cooking Up Flavorful SWOTs with the Kernel | 用内核做出美味的SWOT分析 |
Organizing The Tools You Make for Later Reuse | 组织你制作的工具以备后用 |
Frozen Dinner The Design Thinking Meal | 冷冻晚餐的设计思维餐 |
Dont Forget to Save the Generated Dripping or The Gravy | 不要忘记保存生成的油滴或肉汁 |
A Kitchen That Responds to Your I’m Hungry is More Than Feasible | 响应你的“我饿了”的厨房是完全可行的 |
There’s a Fully-Outfitted Professional-Grade Kitchen Ready For You | 有一个装备齐全的专业厨房为你准备好了 |
Conclusion | 结论 |
Finetuning Large Language Models | 微调大型语言模型 |
---|---|
Introduction | 介绍 |
Why finetune | 为什么微调 |
Where finetuning fits in | 微调的适用场景 |
Instruction finetuning | 指令微调 |
Data preparation | 数据准备 |
Training process | 训练过程 |
Evaluation and iteration | 评估和迭代 |
Consideration on getting started now | 现在开始的考虑因素 |
Conclusion | 结论 |
Large Language Models with Semantic Search | 具有语义搜索的大型语言模型 |
---|---|
Introduction | 介绍 |
Keyword Search | 关键词搜索 |
Embeddings | 嵌入 |
Dense Retrieval | 稠密检索 |
ReRank | 重新排序 |
Generating Answers | 生成答案 |
Conclusion | 结论 |
Evaluating and Debugging Generative AI | 评估和调试生成式AI |
---|---|
Introduction | 介绍 |
Instrument W&B | 工具W&B |
Training a Diffusion Model with W&B | 使用W&B训练扩散模型 |
Evaluating Diffusion Models | 评估扩散模型 |
LLM Evaluation and Tracing with W&B | 使用W&B进行LLM评估和追踪 |
Finetuning a language model | 微调语言模型 |
Conclusion | 结论 |
Building Generative AI Applications with Gradio | 使用Gradio构建生成式AI应用 |
---|---|
Introduction | 介绍 |
NLP Tasks interface | NLP任务界面 |
Image Captioning app | 图像字幕应用 |
Image generation app | 图像生成应用 |
Describe and Generate Game | 描述和生成游戏 |
Chat with any LLM | 与任何LLM聊天 |
Conclusion | 结论 |
LangChain Chat with Your Data | 使用LangChain与数据聊天 |
---|---|
Introduction | 介绍 |
Document Loading | 文档加载 |
Document Splitting | 文档拆分 |
Vectorstores and Embedding | 向量存储和嵌入 |
Retrieval | 检索 |
Question Answering | 问答 |
Chat | 聊天 |
Conclusion | 结论 |
Building Systems with the ****** API | 使用****** API构建系统 |
---|---|
Introduction | 介绍 |
Language Models, the Chat Format and Tokens | 语言模型、聊天格式和词元 |
Classification | 分类 |
Moderation | 审核 |
Chain of Thought Reasoning | 思维链推理 |
Chaining Prompts | 链接提示 |
Check Outputs | 检查输出 |
Evaluation | 评估 |
Evaluation Part I | 评估第一部分 |
Evaluation Part II | 评估第二部分 |
Summary | 总结 |
How Diffusion Models Work | 扩散模型的工作原理 |
---|---|
Introduction | 介绍 |
Intuition | 直觉 |
Sampling | 采样 |
Neural Network | 神经网络 |
Training | 训练 |
Controlling | 控制 |
Speeding Up | 加速 |
Summary | 总结 |
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。