赞
踩
AI大模型的测试和评估是一个复杂的过程,通常包括多个方面的考量,因此对大模型的测试也称为多度测试。
可以简单概括为以下几个方面:
模型的参数量
模型参数计算(以ALexNet为例):
参数量在6000万,假设每个参数都是一个float,即4个字节,总字节就是24000万字节,则24000万字节/1024/1024 = 228MB
大模型竞技场Chatbot Arena
一个针对大型语言模型(LLMs),采用众包方法进行匿名、随机化的对战的评分系统。
大模型测试详情
根据清华发布2024年3月版《SuperBench大模型综合能力评测报告》。SuperBench 评测体系包含了语义、代码、对齐、智能体和安全等五个评测大类,28 个子类。
*PART/1 语义评测*
在语义理解能力评测中,模型形成三个梯队。70 分档为第一梯队,包括 Claude-3(76.7 分,第一),GLM-4 和文心一言 4.0 超过 GPT-4 系列模型,分别位居第二和第三,但与 Claude-3 有 3 分差距。
PART/2 代码评测
在代码编写能力评测中,国内模型与国际一流模型仍有明显差距。GPT-4 系列和 Claude-3 模型在代码通过率上明显领先。国内模型中,GLM-4、文心一言 4.0 和讯飞星火 3.5 表现突出,综合得分超过 40 分。但即使是表现最好的模型,代码的一次通过率仍只有约 50%,代码生成任务对现有大模型仍是一大挑战。
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
保证100%免费
】Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。