当前位置:   article > 正文

轮腿机器人-五连杆正运动学解算_腿部五连杆机构运动学解算

腿部五连杆机构运动学解算

轮腿机器人-五连杆与VMC

1.五连杆正运动学分析

Alt

如图所示为五连杆结构图,其中A,E为机器人腿部控制的两个电机,θ1,θ4可以通过电机的编码器测得。五连杆控制任务主要关注机构末端C点位置,其位置用直角坐标表示为(Cx,Cy),极坐标系用(L0,θ0)表示。
根据上述五连杆结构图可以列出以下等式:
{ B x + L 2 ∗ c o s ( θ 2 ) = D x + L 3 ∗ c o s ( θ 3 ) B y + L 2 ∗ s i n ( θ 2 ) = D y + L 3 ∗ s i n ( θ 3 ) {Bx+L2cos(θ2)=Dx+L3cos(θ3)By+L2sin(θ2)=Dy+L3sin(θ3) {Bx+L2cos(θ2)=Dx+L3cos(θ3)By+L2sin(θ2)=Dy+L3sin(θ3)(1)
对公式(1)移项,并在等式两边进行平方有:
{ ( B x + L 2 ∗ c o s ( θ 2 ) − D x ) 2 = ( L 3 ∗ c o s ( θ 3 ) ) 2 ( B y + L 2 ∗ s i n ( θ 2 ) − D y ) 2 = ( L 3 ∗ s i n ( θ 3 ) ) 2 {(Bx+L2cos(θ2)Dx)2=(L3cos(θ3))2(By+L2sin(θ2)Dy)2=(L3sin(θ3))2 {(Bx+L2cos(θ2)Dx)2=(L3cos(θ3))2(By+L2sin(θ2)Dy)2=(L3sin(θ3))2(2)
将平方展开有:
{ ( B x − D x ) 2 + 2 ∗ ( B x − D x ) ∗ L 2 ∗ c o s ( θ 2 ) + ( L 2 ∗ c o s ( θ 2 ) ) 2 = ( L 3 ∗ c o s ( θ 3 ) ) 2 ( B y − D y ) 2 + 2 ∗ ( B y − D y ) ∗ L 2 ∗ s i n ( θ 2 ) + ( L 2 ∗ s i n ( θ 2 ) ) 2 = ( L 3 ∗ s i n ( θ 3 ) ) 2 {(BxDx)2+2(BxDx)L2cos(θ2)+(L2cos(θ2))2=(L3cos(θ3))2(ByDy)2+2(ByDy)L2sin(θ2)+(L2sin(θ2))2=(L3sin(θ3))2 {(BxDx)2+2(BxDx)L2cos(θ2)+(L2cos(θ2))2=(L3cos(θ3))2(ByDy)2+2(ByDy)L2sin(θ2)+(L2sin(θ2))2=(L3sin(θ3))2(3)
对公式(3)内部两个等式相加并移项有:
K ∗ s i n ( θ 2 ) + M ∗ c o s ( θ 2 ) = C Ksin(θ2)+Mcos(θ2)=C Ksin(θ2)+Mcos(θ2)=C(4)

{ K = 2 ∗ ( B y − D y ) ∗ L 2 M = 2 ∗ ( B x − D x ) ∗ L 2 P = 2 ∗ [ ( L 3 ) 2 − ( L 2 ) 2 ] L B D = ( B x − D x ) 2 + ( B y − D y ) 2 C = P − ( L B D ) 2 {K=2(ByDy)L2M=2(BxDx)L2P=2[(L3)2(L2)2]LBD=(BxDx)2+(ByDy)2C=P(LBD)2 K=2(ByDy)L2M=2(BxDx)L2P=2[(L3)2(L2)2]LBD=(BxDx)2+(ByDy)2 C=P(LBD)2
使用二倍角法对公式(4)进一步化简,已知:
{ t a n θ 2 = s i n ( θ ) 1 + c o s ( θ ) c o s ( θ ) = c o s 2 θ 2 − s i n 2 θ 2 = 2 ∗ c o s 2 θ 2 − 1 c o s 2 θ 2 − s i n 2 θ 2 = 1 {tanθ2=sin(θ)1+cos(θ)cos(θ)=cos2θ2sin2θ2=2cos2θ21cos2θ2sin2θ2=1 tan2θ=1+cos(θ)sin(θ)cos(θ)=cos22θsin22θ=2cos22θ1cos22θsin22θ=1
1 + c o s ( θ ) ≠ 0 1+{\color{Green} cos(\theta )} \ne 0 1+cos(θ)=0,对公式(4)进行如下变化,其中 τ = 1 + c o s ( θ ) \tau=1+{\color{Green}cos(\theta)} τ=1+cos(θ):
τ 2 ∗ ( 2 ∗ K ∗ s i n ( θ 2 ) τ + 2 ∗ M ∗ c o s ( θ 2 ) τ − 2 ∗ C τ ) = 0 τ2(2Ksin(θ2)τ+2Mcos(θ2)τ2Cτ)=0 2τ(τ2Ksin(θ2)+τ2Mcos(θ2)τ2C)=0(5)
使用二倍角对公式(5)进行展开并进行化简得:
1 + c o s ( θ 2 ) 2 ∗ [ ( C − M ) ∗ t a n 2 θ 2 2 + 2 ∗ K ∗ t a n ( θ 2 2 ) + ( M + C ) ] 1+cos(θ2)2[(CM)tan2θ22+2Ktan(θ22)+(M+C)] 21+cos(θ2)[(CM)tan22θ2+2Ktan(2θ2)+(M+C)](6)
根据公式(6)得到了一个关于 t a n ( θ 2 2 ) {\color{Purple} tan(\frac{\theta_{2} }{2})} tan(2θ2)的一元二次方程,其求根判别式为:
△ = ( 2 ∗ K ) 2 − 4 ∗ ( C − M ) ∗ ( M + C ) = 4 ( K 2 + M 2 − C 2 ) \bigtriangleup =(2*K)^2-4*(C-M)*(M+C)=4(K^2+M^2-C^2) =(2K)24(CM)(M+C)=4(K2+M2C2)
△ ≥ 0 \bigtriangleup\ge 0 0时,可以解出 θ 2 \theta_{2} θ2:
θ 2 = 2 ∗ a r c t a n ( K ± ( K 2 + M 2 − C 2 ) M − C ) \theta _{2}=2*arctan(\frac{K\pm \sqrt{(K^2+M^2-C^2)} }{M-C} ) θ2=2arctan(MCK±(K2+M2C2) )
通过 θ 1 \theta_{1} θ1即可解算出 C C C点的直角坐标有:
{ C x = L 1 ∗ c o s ( θ 1 ) + L 2 ∗ c o s ( θ 2 ) C y = L 1 ∗ s i n ( θ 1 ) + L 2 ∗ s i n ( θ 2 ) {Cx=L1cos(θ1)+L2cos(θ2)Cy=L1sin(θ1)+L2sin(θ2) {Cx=L1cos(θ1)+L2cos(θ2)Cy=L1sin(θ1)+L2sin(θ2)(7)
进一步推导得到极坐标为:
{ L 0 = ( C x − L 5 ) 2 + C y 2 θ 0 = a r c t a n C y C x − L 5 2 {L0=(CxL5)2+C2yθ0=arctanCyCxL52 L0=(CxL5)2+Cy2 θ0=arctanCx2L5Cy(8)

2.参考文献

https://zhuanlan.zhihu.com/p/613007726
[1]于红英,唐德威,王建宇.平面五杆机构运动学和动力学特性分析[J].哈尔滨工业大学学报,2007(06):940-943.
[2]谢惠祥.四足机器人对角小跑步态虚拟模型直觉控制方法研究[D].国防科学技术大学,2015.

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Li_阴宅/article/detail/894127
推荐阅读
相关标签
  

闽ICP备14008679号