当前位置:   article > 正文

平衡二叉搜索树 -- AVL树_avl树时间复杂度

avl树时间复杂度

AVL树

1.1 AVL树的概念

二叉搜索树虽然可以缩短查找的效率,但如果数据有序或者接近有序的二叉搜索树将退化为单支树查找元素相当于在顺序表中搜索元素,效率低下。因此俄罗斯的两位数学家 G.M.Adelson-Velskii 和 E.M.Landis 在1962年发明了一种解决上述问题的方法:
当二叉搜索树插入新节点后,如果能保证每个节点的左右子树高度之差 的绝对值不超过1,即可降低树的高度,从而减少平均搜索长度。

一颗AVL树或者是空树 或者具有以下性质的搜索二叉树:

  • 它的左右子树都是AVL树
  • 左右子树的高度之差(简称为平衡因子)的绝对值不超过1 (-1,0,1)

在这里插入图片描述

AVL树平均高度大概是1.44logN + c,c是常数,搜索的时间复杂度是 o(logn)

2.1 AVL树的实现

template<class K ,class V>
struct AVLTreeNode
{	
	pair<K, V> _kv;
	AVLTreeNode<K, V>* _left;
	AVLTreeNode<K, V>* _right;
	AVLTreeNode<K, V>* _parent;
	int _bf; // balance factor

	AVLTreeNode(const pair<K,V>& kv  = pair<K,V>())
		:_left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _bf(0)
	    ,_kv(kv)
	{}

};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么
AVL树的插入过程可以分为两步:

1. 按照二叉搜索树的方式插入新节点
2. 调整节点的平衡因子

bool Insert(const pair<K,V>& kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
			_root->_bf = 0;
			return true;
		}
		Node* cur = _root;
		Node* parent = nullptr;
		while (cur)
		{
			if (cur->_kv.first > kv.first)
			{	
				parent = cur;
				cur = cur->_left;
			}
			else if (cur->_kv.first < kv.first)
			{	
				parent = cur;
				cur = cur->_right;
			}
			else
			{
				return false;
			}


		}
		//
		cur = new Node(kv);
		if (parent->_kv.first > kv.first)
		{
			parent->_left = cur;
		}
		else
		{
			parent->_right = cur;
		}
		cur->_parent = parent;

		//更新bf;
		while (parent)
		{
			if (cur == parent->_left)
			{
				parent->_bf--;
			}
			else if (cur == parent->_right)
			{
				parent->_bf++;
			}

			if (parent->_bf == 0)
			{
				break;
			}
			else if (parent->_bf == 1 || parent->_bf == -1)
			{
				cur = cur->_parent;
				parent = parent->_parent;
				//向上调查一下
			}
			else if (parent->_bf == 2 || parent->_bf == -2)
			{
				//出问题,需要旋转!
				
				break;
			}
			else
			{
				cout << "平衡因子出现异常" << endl;
				assert(false);
			}


		}

		return true;

	}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81

2.2 AVL树的旋转

如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,
使之平衡化。根据节点插入位置的不同,AVL树的旋转分为四种:

1. 新节点插入较高左子树的左侧—左左:右单旋

在这里插入图片描述

void RotateR(Node* parent)
	{
		Node* ppNode = parent->_parent;//记录原parent节点的parent
		Node* subL = parent->_left; subL为左根
		Node* subLR = subL->_right;subLR为左根的右子树根
		parent->_left = subLR;
		if (subLR) //subLR有可能为空
			subLR->_parent = parent;
		subL->_right = parent;
		parent->_parent = subL;
		if (parent == _root)
		{
			_root = subL;
			_root->_parent = nullptr;
		}
		else
		{   // 判断是左子树还是右子树,进行链接
			if (ppNode->_left == parent)
			{
				ppNode->_left = subL;
			}
			else
			{
				ppNode->_right = subL;
			}
			subL->_parent = ppNode;
		}
		//更新平衡因子  balance factor
		subL->_bf = 0;
		parent->_bf = 0;

	}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32

2. 新节点插入较高右子树的右侧—右右:左单旋

在这里插入图片描述

void RotateL(Node* parent)
	{
		Node* ppNode = parent->_parent;
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		parent->_right = subRL;
		if (subRL)
		{
			subRL->_parent = parent;
		}
		subR->_left = parent;
		parent->_parent = subR;
		if (parent == _root)
		{
			_root = subR;
			_root->_parent = nullptr;
		}
		else
		{
			if (ppNode->_left == parent)
			{
				ppNode->_left = subR;
				
			}
			else
			{
				ppNode->_right = subR;
			}


			subR->_parent = ppNode;
		}

		parent->_bf = 0;
		subR->_bf = 0;
	}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36

3. 新节点插入较高左子树的右侧—左右:先左单旋再右单旋
在这里插入图片描述

void RotateRL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		int bf = subRL->_bf;

		RotateR(parent->_right);
		//复用
		RotateL(parent);

		if (bf == 0)
		{
			subRL->_bf = parent->_bf = subR->_bf = 0;
		}
		else if (bf == 1)
		{
			subRL->_bf = 0;
			parent->_bf = -1;
			subR->_bf = 0;
		}
		else if (bf == -1)
		{
			subRL->_bf = 0;
			parent->_bf = 0;
			subR->_bf = 1;
		}
		else
		{
			assert(-1);
		}

	}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32

4. 新节点插入较高右子树的左侧—右左:先右单旋再左单旋

在这里插入图片描述

void RotateLR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		int bf = subLR->_bf;

		RotateL(parent->_left);
		RotateR(parent);

		if (bf == 0)
		{
			parent->_bf = subL->_bf = subLR->_bf = 0;
		}
		else if (bf == 1)
		{
			parent->_bf = 0;
			subL->_bf = -1;
			subLR->_bf = 0;
		}
		else if (bf == -1)
		{
			parent->_bf = 1;
			subL->_bf = 0;
			subLR->_bf = 0;
		}
		else
		{
			assert(0);
		}

	}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31

参考右左双旋。
总结:
假如以pParent为根的子树不平衡,即pParent的平衡因子为2或者-2,分以下情况考虑

  1. pParent的平衡因子为2,说明pParent的右子树高,设pParent的右子树的根为pSubR
    当pSubR的平衡因子为1时,执行左单旋
    当pSubR的平衡因子为-1时,执行右左双旋
  2. pParent的平衡因子为-2,说明pParent的左子树高,设pParent的左子树的根为pSubL
    当pSubL的平衡因子为-1是,执行右单旋
    当pSubL的平衡因子为1时,执行左右双旋
    旋转完成后,原pParent为根的子树个高度降低,已经平衡,不需要再向上更新。
if (parent->_bf == -2 && cur->_bf == -1)
				{
					RotateR(parent);
				}
				else if (parent->_bf == 2 && cur->_bf == 1)
				{
					RotateL(parent);
				}
				else if (parent->_bf == -2 && cur->_bf == 1)
				{
					RotateLR(parent);
				}
				else if (parent->_bf == 2 && cur->_bf == -1)
				{
					RotateRL(parent);
				}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这
样可以保证查询时高效的时间复杂度,即 l o g 2 ( N ) log_2 (N) log2(N)。但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Li_阴宅/article/detail/914488
推荐阅读
相关标签
  

闽ICP备14008679号