当前位置:   article > 正文

权重衰退-_优化器 损失权重

优化器 损失权重

权重衰退

对于缓解过拟合问题,我们是可以通过收集大量数据来环节过拟合的现象。 但这可能成本很高,耗时颇多,或者完全超出我们的控制,因而在短期内不可能做到。假设我们已经拥有尽可能多的高质量数据,我们便可以将重点放在正则化技术上。

在回归的例子上,我们可以通过调整拟合多项式的阶数来限制模型的容量。限制特征的数量是缓解过拟合的一种常用技术。

范数与权重衰减

在此之前,我们已经描述了L2 范数和L1范数,在训练参数化机器模型时,权重衰减(Weight decay)时最广泛使用正则化的技术之一,通常也被成为L2正则化。

最常用方法是将其范数作为惩罚项加到最小化损失的问题中。 将原来的训练目标最小化训练标签上的预测损失, 调整为最小化预测损失和惩罚项之和。

我们通过正则化常数

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Li_阴宅/article/detail/939049
推荐阅读
相关标签