当前位置:   article > 正文

【大模型应用开发 动手做AI Agent】Agent的规划和决策能力系列_大模型应用开发动手做aiagent pdf

大模型应用开发动手做aiagent pdf

OpenAI应用研究主管Lilian Weng在一篇长文中提出了

Agent = LLM(大型语言模型)+记忆+规划技能+工具使用

这一概念。AI Agent需要具备感知环境、做出决策并执行适当行动的能力。在这些关键步骤中,最重要的是理解输入给Agent的内容、进行推理、规划、做出准确决策,并将其转化为可执行的原子动作序列,以实现最终目标。

在这里插入图片描述

一个精简的Agent决策流程:

感知(Perception)→ 规划(Planning)→ 行动(Action)

  • 感知(Perception)是指Agent从环境中收集信息并从中提取相关知识的能力。
  • 规划(Planning)是指Agent为了某一目标而作出的决策过程。
  • 行动(Action)是指基于环境和规划做出的动作。

Agent通过感知从环境中收集信息并提取相关知识。然后通过规划为了达到某个目标做出决策。最后,通过行动基于环境和规划做出具体的动作。Planning是Agent做出行动的核心决策,而行动又为进一步感知提供了观察的前提和基础,形成了一个自主的闭环学习过程。

借用网上的一个案例来解释agent的执行:

  • 当一个人问Agent是否会下雨时,感知模块将指令转换为LLM可以理解的表示。
  • 然后,大脑模块开始根据当前天气和互联网上的天气预报进行推理。
  • 最后,动作模块做出响应,将伞交给人类。
    通过重复上述过程,智能体可以不断地获得反馈并与环境进行交互。

在这里插入图片描述

在以LLM驱动的Agent系统中,LLM扮演着Agent的大脑角色,并辅以几个关键组件:

  • 规划:LLM能够进行全面的规划,不仅仅是简单的任务拆分。它可以评估不同的路径和策略,制定最佳的行动计划,以实现用户给出的目标。

  • 记忆:可以利用LLM具有的记忆功能,存储和检索过去的信息和经验。这使得它能够在处理用户查询时,利用之前学到的知识和经验,提供更准确和个性化的答案。

  • 工具使用:LLM通过理解工具的描述,来学习使用各种工具和资源,并灵活运用它们来支持任务的完成,在构建Agent的时候可以让Agent感知自己可以使用什么工具。工具的实现可以是利用搜索引擎、数据库、调用API等,获取和整理相关信息,以满足用户的需求。

文章目录

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Li_阴宅/article/detail/952993
推荐阅读
相关标签
  

闽ICP备14008679号