当前位置:   article > 正文

spark word2vec 源码_Spark MLlib机器学习开发指南(5)--特征提取--Word2Vec

特征提取word2vec代码

Spark MLlib机器学习开发指南(5)--特征提取,转换,选择--Word2Vec

翻译自Word2Vec,基于最新2.2.0版本翻译,转载注明出处 xcrossed 机器学习

Word2Vec

在spark ml中,Word2Vec是一个估计器(前面说过估计器和转换器的概念了,可以往回看具体概念),由表示文档的单词序列训练而成的一个Word2VecModel。模型映射每个单词为一个唯一固定大小的向量。Word2VecModel使用文档中所有单词的平均值将每个文档转换成一个向量,这个向量可以作为预测的特征,文档相似性计算等等。请参阅Word2VecMLlib的用户指南,以了解更多细节。

示例

在下面的代码片断,我们一个文档集合开始,每个文档由一序列的单词表示。每个文档我们将转换成一个特征向量,这个特征向量可以被传递给一个学习算法。import org.apache.spark.ml.feature.Word2Vecimport org.apache.spark.ml.linalg.Vectorimport org.apache.spark.sql.Row// Input data: Each row is a bag of words from a sentence or document.val documentDF = spark.createDataFrame(Seq(  "Hi I heard about Spark".split(" "),  "I wish Java could use case classes".split(" "),  "Logistic regression models are neat".split(" ")

).map(Tuple1.apply)).toDF("text")// Learn a mapping from words to Vectors.val word2Vec = new Word2Vec()

.setInputCol("text")

.setOutputCol("result")

.setVectorSize(3)

.setMinCount(0)val model = word2Vec.fit(documentDF)val result = model.transform(documentDF)

result.collect().foreach { case Row(text: Seq[_], features: Vector) =>

println(s"Text: [${text.mkString(", ")}] => \nVector: $features\n") }

作者:xcrossed

链接:https://www.jianshu.com/p/f92967ad49a8

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Li_阴宅/article/detail/997222
推荐阅读
相关标签
  

闽ICP备14008679号