赞
踩
MQ就是消息队列(Message Queue)。是软件程序之间进行通信的中间件产品。
简答:
详答:(主要是:解耦、异步、削峰)
解耦:A 系统发送数据到 BCD 三个系统,通过接口调用发送。如果 E 系统也要这个数据呢?那如果 C 系统现在不需要了呢?A 系统负责人几乎崩溃…A 系统跟其它各种乱七八糟的系统严重耦合,A 系统产生一条比较关键的数据,很多系统都需要 A 系统将这个数据发送过来。如果使用 MQ,A 系统产生一条数据,发送到 MQ 里面去,哪个系统需要数据自己去 MQ 里面消费。如果新系统需要数据,直接从 MQ 里消费即可;如果某个系统不需要这条数据了,就取消对 MQ 消息的消费即可。这样下来,A 系统压根儿不需要去考虑要给谁发送数据,不需要维护这个代码,也不需要考虑人家是否调用成功、失败超时等情况。
就是一个系统或者一个模块,调用了多个系统或者模块,互相之间的调用很复杂,维护起来很麻烦。但是其实这个调用是不需要直接同步调用接口的,如果用 MQ 给它异步化解耦。
异步:A 系统接收一个请求,需要在自己本地写库,还需要在 BCD 三个系统写库,自己本地写库要 3ms,BCD 三个系统分别写库要 300ms、450ms、200ms。最终请求总延时是 3 + 300 + 450 + 200 = 953ms,接近 1s,用户感觉搞个什么东西,慢死了慢死了。用户通过浏览器发起请求。如果使用 MQ,那么 A 系统连续发送 3 条消息到 MQ 队列中,假如耗时 5ms,A 系统从接受一个请求到返回响应给用户,总时长是 3 + 5 = 8ms。
削峰:减少高峰时期对服务器压力。
系统可用性降低
本来系统运行好好的,现在你非要加入个消息队列进去,那消息队列挂了,你的系统不是呵呵了。因此,系统可用性会降低;
系统复杂度提高
加入了消息队列,要多考虑很多方面的问题,比如:一致性问题、如何保证消息不被重复消费、如何保证消息可靠性传输等。因此,需要考虑的东西更多,复杂性增大。
一致性问题
A 系统处理完了直接返回成功了,人都以为你这个请求就成功了;但是问题是,要是 BCD 三个系统那里,BD 两个系统写库成功了,结果 C 系统写库失败了,咋整?你这数据就不一致了。
所以消息队列实际是一种非常复杂的架构,你引入它有很多好处,但是也得针对它带来的坏处做各种额外的技术方案和架构来规避掉,做好之后,你会发现,妈呀,系统复杂度提升了一个数量级,也许是复杂了 10 倍。但是关键时刻,用,还是得用的。
ActiveMQ | RabbitMQ | RocketMQ | Kafka | |
---|---|---|---|---|
单机吞吐量 | 比RabbitMQ低 | 2.6w/s(消息做持久化) | 11.6w/s | 17.3w/s |
开发语言 | Java | Erlang | Java | Scala/Java |
主要维护者 | Apache | Mozilla/Spring | Alibaba | Apache |
成熟度 | 成熟 | 成熟 | 开源版本不够成熟 | 比较成熟 |
订阅形式 | 点对点(p2p)、广播(发布-订阅) | 提供了4种:direct,topic,Headers和fanout。fanout就是广播模式 | 基于topic/messageTag以及按照消息类型、属性进行正则匹配的发布订阅模式 | 基于topic以及按照topic进行正则匹配的发布订阅模式 |
持久化 | 支持少量堆积 | 支持少量堆积 | 支持大量堆积 | 支持大量堆积 |
顺序消息 | 不支持 | 不支持 | 支持 | 支持 |
性能稳定性 | 好 | 好 | 一般 | 很差 |
集群方式 | 支持简单集群模式,比如’主-备’,对高级集群模式支持不好。 | 支持简单集群,'复制’模式,对高级集群模式支持不好。 | 常用 多对’Master-Slave’ 模式,开源版本需手动切换Slave变成Master | 天然的‘Leader-Slave’无状态集群,每台服务器既是Master也是Slave |
管理界面 | 一般 | 较好 | 一般 | 无 |
综上,各种对比之后,有如下建议:
ActiveMQ:
一般的业务系统要引入 MQ,最早大家都用 ActiveMQ,但是现在确实大家用的不多了,没经过大规模吞吐量场景的验证,社区也不是很活跃,所以大家还是算了吧,个人不推荐用这个;
RabbitMQ:
后来大家开始用 RabbitMQ,但是确实 erlang 语言阻止了大量的 Java 工程师去深入研究和掌控它,对公司而言,几乎处于不可控的状态,但是确实人家是开源的,比较稳定的支持,活跃度也高;
不过现在确实越来越多的公司会去用 RocketMQ,确实很不错,毕竟是阿里出品,但社区可能有突然黄掉的风险(目前 RocketMQ 已捐给 Apache,但 GitHub 上的活跃度其实不算高)对自己公司技术实力有绝对自信的,推荐用 RocketMQ,否则回去老老实实用 RabbitMQ 吧,人家有活跃的开源社区,绝对不会黄。
所以中小型公司,技术实力较为一般,技术挑战不是特别高,用 RabbitMQ 是不错的选择;大型公司,基础架构研发实力较强,用 RocketMQ 是很好的选择。
Kafka:
如果是大数据领域的实时计算、日志采集等场景,用 Kafka 是业内标准的,绝对没问题,社区活跃度很高,绝对不会黄,何况几乎是全世界这个领域的事实性规范。
MQ 的常见问题有:
(1)消息的顺序问题
消息有序指的是可以按照消息的发送顺序来消费。
假如生产者产生了 2 条消息:M1、M2,假定 M1 发送到 S1,M2 发送到 S2,如果要保证 M1 先于 M2 被消费,怎么做?
解决方案:
缺陷:
(2)消息的重复问题
造成消息重复的根本原因是:网络不可达。
所以解决这个问题的办法就是绕过这个问题。那么问题就变成了:如果消费端收到两条一样的消息,应该怎样处理?
消费端处理消息的业务逻辑保持幂等性。只要保持幂等性,不管来多少条重复消息,最后处理的结果都一样。保证每条消息都有唯一编号且保证消息处理成功与去重表的日志同时出现。利用一张日志表来记录已经处理成功的消息的 ID,如果新到的消息 ID 已经在日志表中,那么就不再处理这条消息。
RabbitMQ是一款开源的,使用Erlang语言编写的,基于AMQP协议的消息中间件。
最大的特点就是消费并不需要确保提供方存在,实现了服务之间的高度解耦。可以用它来:解耦、异步、削峰。
(1)服务间异步通信
(2)顺序消费
(3)定时任务
(4)请求削峰
由Exchange、Queue、RoutingKey三个才能决定一个从Exchange到Queue的唯一的线路。
(1)simple模式(即最简单的收发模式)
① 消息产生消息,将消息放入队列;
② 消息的消费者(consumer) 监听 消息队列,如果队列中有消息,就消费掉,消息被拿走后,自动从队列中删除。
隐患:消息可能没有被消费者正确处理,已经从队列中消失了,造成消息的丢失,这里可以设置成手动的ack,但如果设置成手动ack,处理完后要及时发送ack消息给队列,否则会造成内存溢出。
(2)work工作模式(资源的竞争)
消息产生者将消息放入队列消费者可以有多个,消费者1,消费者2同时监听同一个队列,消息被消费。C1 C2共同争抢当前的消息队列内容,谁先拿到谁负责消费消息。
隐患:高并发情况下,默认会产生某一个消息被多个消费者共同使用,可以设置一个开关(syncronize) 保证一条消息只能被一个消费者使用。
(3)publish/subscribe发布订阅(共享资源)
① 每个消费者监听自己的队列;
② 生产者将消息发给broker,由交换机将消息转发到绑定此交换机的每个队列,每个绑定交换机的队列都将接收到消息。
(4)routing路由模式
① 消息生产者将消息发送给交换机按照路由判断,路由是字符串(info) 当前产生的消息携带路由字符(对象的方法),交换机根据路由的key,只能匹配上路由key对应的消息队列,对应的消费者才能消费消息;
② 根据业务功能定义路由字符串;
③ 从系统的代码逻辑中获取对应的功能字符串,将消息任务扔到对应的队列中。
④ 业务场景:error 通知;EXCEPTION;错误通知的功能;传统意义的错误通知;客户通知;利用key路由,可以将程序中的错误封装成消息传入到消息队列中,开发者可以自定义消费者,实时接收错误。
(5)topic 主题模式(路由模式的一种)
① * 和 # 代表通配符;
② * 代表多个单词,# 代表一个单词;
③ 路由功能添加模糊匹配;
④ 消息产生者产生消息,把消息交给交换机;
⑤ 交换机根据key的规则模糊匹配到对应的队列,由队列的监听消费者接收消息消费。
在我的理解看来就是routing查询的一种模糊匹配,就类似sql的模糊查询方式。
拆分多个 queue,每个 queue 一个 consumer,就是多一些 queue 而已,确实是麻烦点;
或者就一个 queue 但是对应一个 consumer,然后这个 consumer 内部用内存队列做排队,然后分发给底层不同的 worker 来处理。
若该队列至少有一个消费者订阅,消息将以循环(round-robin)的方式发送给消费者。每条消息只会分发给一个订阅的消费者(前提是消费者能够正常处理消息并进行确认)。通过路由可实现多消费的功能。
消息提供方 -> 路由 -> 一至多个队列消息发布到交换器时,消息将拥有一个路由键(routing key),在消息创建时设定。通过队列路由键,可以把队列绑定到交换器上。消息到达交换器后,RabbitMQ 会将消息的路由键与队列的路由键进行匹配(针对不同的交换器有不同的路由规则)。
常用的交换器主要分为一下三种:
由于 TCP 连接的创建和销毁开销较大,且并发数受系统资源限制,会造成性能瓶颈。RabbitMQ 使用信道的方式来传输数据。信道是建立在真实的 TCP 连接内的虚拟连接,且每条 TCP 连接上的信道数量没有限制。
先说为什么会重复消费:
正常情况下,消费者在消费消息的时候,消费完毕后,会发送一个确认消息给消息队列,消息队列就知道该消息被消费了,就会将该消息从消息队列中删除。
但是因为网络传输等等故障,确认信息没有传送到消息队列,导致消息队列不知道自己已经消费过该消息了,再次将消息分发给其他的消费者。
针对以上问题,一个解决思路是:保证消息的唯一性,就算是多次传输,不要让消息的多次消费带来影响;保证消息等幂性;
发送方确认模式:
接收方确认机制:
下面罗列几种特殊情况:
消息不可靠的情况可能是消息丢失,劫持等原因;
丢失又分为:生产者丢失消息、消息列表丢失消息、消费者丢失消息。
(1)生产者丢失消息
从生产者弄丢数据这个角度来看,RabbitMQ提供transaction和confirm模式来确保生产者不丢消息;
(2)消息队列丢数据:需要消息持久化。
处理消息队列丢数据的情况,一般是开启持久化磁盘的配置。
这个持久化配置可以和confirm机制配合使用,你可以在消息持久化磁盘后,再给生产者发送一个
Ack信号。
这样,如果消息持久化磁盘之前,rabbitMQ阵亡了,那么生产者收不到Ack信号,生产者会自动
重发。
那么如何持久化呢?
这里顺便说一下吧,其实也很容易,就下面两步:
这样设置以后,即使rabbitMQ挂了,重启后也能恢复数据。
(3)消费者丢失消息:
消费者丢数据一般是因为采用了自动确认消息模式,改为手动确认消息即可!
消费者在收到消息之后,处理消息之前,会自动回复RabbitMQ已收到消息;
如果这时处理消息失败,就会丢失该消息;
解决方案:处理消息成功后,手动回复确认消息。
首先,必然导致性能的下降,因为写磁盘比写 RAM 慢的多,message 的吞吐量可能有 10 倍的差距。
其次,message 的持久化机制用在 RabbitMQ 的内置 cluster 方案时会出现“坑爹”问题。矛盾点在于,若 message 设置了 persistent 属性,但 queue 未设置 durable 属性,那么当该 queue 的 owner node 出现异常后,在未重建该 queue 前,发往该 queue 的 message 将被 blackholed ;若 message 设置了 persistent 属性,同时 queue 也设置了 durable 属性,那么当 queue 的 owner node 异常且无法重启的情况下,则该 queue 无法在其他 node 上重建,只能等待其 owner node 重启后,才能恢复该 queue 的使用,而在这段时间内发送给该 queue 的 message 将被 blackholed 。
所以,是否要对 message 进行持久化,需要综合考虑性能需要,以及可能遇到的问题。若想达到 100,000 条/秒以上的消息吞吐量(单 RabbitMQ 服务器),则要么使用其他的方式来确保 message 的可靠 delivery ,要么使用非常快速的存储系统以支持全持久化(例如使用 SSD)。另外一种处理原则是:仅对关键消息作持久化处理(根据业务重要程度),且应该保证关键消息的量不会导致性能瓶颈。
RabbitMQ 是比较有代表性的,因为是基于主从(非分布式)做高可用性的,我们就以 RabbitMQ 为例子讲解第一种 MQ 的高可用性怎么实现。RabbitMQ 有三种模式:单机模式、普通集群模式、镜像集群模式。
单机模式:就是 Demo 级别的,一般就是你本地启动了玩玩儿的?,没人生产用单机模式
普通集群模式:意思就是在多台机器上启动多个 RabbitMQ 实例,每个机器启动一个。你创建的 queue,只会放在一个 RabbitMQ 实例上,但是每个实例都同步 queue 的元数据(元数据可以认为是 queue 的一些配置信息,通过元数据,可以找到 queue 所在实例)。你消费的时候,实际上如果连接到了另外一个实例,那么那个实例会从 queue 所在实例上拉取数据过来。这方案主要是提高吞吐量的,就是说让集群中多个节点来服务某个 queue 的读写操作。
镜像集群模式:这种模式,才是所谓的 RabbitMQ 的高可用模式。跟普通集群模式不一样的是,在镜像集群模式下,你创建的 queue,无论元数据还是 queue 里的消息都会存在于多个实例上,就是说,每个 RabbitMQ 节点都有这个 queue 的一个完整镜像,包含 queue 的全部数据的意思。然后每次你写消息到 queue 的时候,都会自动把消息同步到多个实例的 queue 上。RabbitMQ 有很好的管理控制台,就是在后台新增一个策略,这个策略是镜像集群模式的策略,指定的时候是可以要求数据同步到所有节点的,也可以要求同步到指定数量的节点,再次创建 queue 的时候,应用这个策略,就会自动将数据同步到其他的节点上去了。这样的话,好处在于,你任何一个机器宕机了,没事儿,其它机器(节点)还包含了这个 queue 的完整数据,别的 consumer 都可以到其它节点上去消费数据。坏处在于,第一,这个性能开销也太大了吧,消息需要同步到所有机器上,导致网络带宽压力和消耗很重!RabbitMQ 一个 queue 的数据都是放在一个节点里的,镜像集群下,也是每个节点都放这个 queue 的完整数据。
消息积压处理办法:临时紧急扩容:
RabbitMQ中积压消息丢失:假设你用的是 RabbitMQ,RabbtiMQ 是可以设置过期时间的,也就是 TTL。如果消息在 queue 中积压超过一定的时间就会被 RabbitMQ 给清理掉,这个数据就没了。那这就是第二个坑了。这就不是说数据会大量积压在 mq 里,而是大量的数据会直接搞丢。我们可以采取一个方案,就是批量重导,这个我们之前线上也有类似的场景干过。就是大量积压的时候,我们当时就直接丢弃数据了,然后等过了高峰期以后,比如大家一起喝咖啡熬夜到晚上12点以后,用户都睡觉了。这个时候我们就开始写程序,将丢失的那批数据,写个临时程序,一点一点的查出来,然后重新灌入 mq 里面去,把白天丢的数据给他补回来。也只能是这样了。假设 1 万个订单积压在 mq 里面,没有处理,其中 1000 个订单都丢了,你只能手动写程序把那 1000 个订单给查出来,手动发到 mq 里去再补一次。
MQ消息队列快满了:如果消息积压在 mq 里,你很长时间都没有处理掉,此时导致 mq 都快写满了,咋办?这个还有别的办法吗?没有,谁让你第一个方案执行的太慢了,你临时写程序,接入数据来消费,消费一个丢弃一个,都不要了,快速消费掉所有的消息。然后走第二个方案,到了晚上再补数据吧。
比如说这个消息队列系统,我们从以下几个角度来考虑一下:
首先这个 mq 得支持可伸缩性吧,就是需要的时候快速扩容,就可以增加吞吐量和容量,那怎么搞?设计个分布式的系统呗,参照一下 kafka 的设计理念,broker -> topic -> partition,每个 partition 放一个机器,就存一部分数据。如果现在资源不够了,简单啊,给 topic 增加 partition,然后做数据迁移,增加机器,不就可以存放更多数据,提供更高的吞吐量了?
其次你得考虑一下这个 mq 的数据要不要落地磁盘吧?那肯定要了,落磁盘才能保证别进程挂了数据就丢了。那落磁盘的时候怎么落啊?顺序写,这样就没有磁盘随机读写的寻址开销,磁盘顺序读写的性能是很高的,这就是 kafka 的思路。
其次你考虑一下你的 mq 的可用性啊?这个事儿,具体参考之前可用性那个环节讲解的 kafka 的高可用保障机制。多副本 -> leader & follower -> broker 挂了重新选举 leader 即可对外服务。
能不能支持数据 0 丢失啊?可以的,参考我们之前说的那个 kafka 数据零丢失方案。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。