赞
踩
发布于: TMLR 2022
COIN++通过优化将广泛的数据模式转换为神经网络,然后将这些神经网络的参数存储为数据的压缩代码。可以通过简单地改变神经网络的输入和输出维度来压缩不同的数据模式。
确定了 COIN 的以下问题:
数据以坐标集(X)和特征集(Y)的形式表示。例如:
每个数据点是坐标和特征对的集合,表示为
。
COIN++架构。潜在调制 φ(绿色)通过超网络映射到调制(蓝色),这些调制被添加到基础网络 fθ(白色)的激活中,以参数化可以在坐标 x 处评估的单个函数以获得特征 y。
在 COIN++ 架构中,不同的图像或数据点对应的调制参数 φ 各不相同,这是因为每个数据或图像可能有其独特的结构和特征需求,通过使用不同的调制参数,可以使得同一个基础网络 fθ 能够适应和生成这些不同的数据。此外,这种方法允许我们在基础网络中存储共享信息,并在调制中存储实例特定信息。例如,对于自然图像,基础网络编码自然图像中常见的结构,而调制存储重建单个图像所需的信息。
(左)从随机初始化θ开始,元学习基础网络的参数θ *(训练进度显示为实线),这样调制φ可以很容易地适应几个梯度步骤(拟合如虚线所示)。(右)在训练期间,随机抽取补丁,而在测试时,将数据点划分为补丁并将调制拟合到每个补丁中。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。