赞
踩
卷积神经网络python代码
仅供学习参考使用
- # -*- coding: utf-8 -*-
-
- import numpy as np
-
-
- class DataSet(object):
-
- def __init__(self, images, labels, num_examples):
- self._images = images
- self._labels = labels
- self._epochs_completed = 0 # 完成遍历轮数
- self._index_in_epochs = 0 # 调用next_batch()函数后记住上一次位置
- self._num_examples = num_examples # 训练样本数
-
- def next_batch(self, batch_size, fake_data=False, shuffle=True):
- start = self._index_in_epochs
-
- if self._epochs_completed == 0 and start == 0 and shuffle:
- index0 = np.arange(self._num_examples)
- np.random.shuffle(index0)
- self._images = np.array(self._images)[index0]
- self._labels = np.array(self._labels)[index0]
-
- if start + batch_size > self._num_examples:
- self._epochs_completed += 1
- rest_num_examples = self._num_examples - start
- images_rest_part = self._images[start:self._num_examples]
- labels_rest_part = self._labels[start:self._num_examples]
- if shuffle:
- index = np.arange(self._num_examples)
- np.random.shuffle(index)
- self._images = self._images[index]
- self._labels = self._labels[index]
- start = 0
- self._index_in_epochs = batch_size - rest_num_examples
- end = self._index_in_epochs
- images_new_part = self._images[start:end]
- labels_new_part = self._labels[start:end]
- return np.concatenate((images_rest_part, images_new_part), axis=0), np.concatenate(
- (labels_rest_part, labels_new_part), axis=0)
- else:
- self._index_in_epochs += batch_size
- end = self._index_in_epochs
- return self._images[start:end], self._labels[start:end]
-
- import tensorflow as tf
- from tensorflow.examples.tutorials.mnist import input_data
- mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
- import time
- start_time = time.time()
- """
- 权重初始化
- """
- def weight_variable(shape):
- initial = tf.truncated_normal(shape, stddev = 0.1)
- return tf.Variable(initial)
-
- def bias_variable(shape):
- initial = tf.constant(0.1, shape = shape)
- return tf.Variable(initial)
-
-
- def conv2d(x, W):
- return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding = 'SAME')
-
- def max_pool_2x2(x):
- return tf.nn.max_pool(x, ksize = [1, 2, 2, 1],
- strides = [1, 2, 2, 1], padding = 'SAME')
-
-
- """
- 第一层 卷积层
- x_image(batch, 28, 28, 1) -> h_pool1(batch, 14, 14, 32)
- """
- x = tf.placeholder(tf.float32,[None, 784])
- x_image = tf.reshape(x, [-1, 28, 28, 1]) #最后一维代表通道数目,如果是rgb则为3
- W_conv1 = weight_variable([5, 5, 1, 32])
- b_conv1 = bias_variable([32])
-
- h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
-
- h_pool1 = max_pool_2x2(h_conv1)
-
-
- """
- 第二层 卷积层
- h_pool1(batch, 14, 14, 32) -> h_pool2(batch, 7, 7, 64)
- """
- W_conv2 = weight_variable([5, 5, 32, 64])
- b_conv2 = bias_variable([64])
-
- h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
-
- h_pool2 = max_pool_2x2(h_conv2)
-
-
- """
- 第三层 全连接层
- h_pool2(batch, 7, 7, 64) -> h_fc1(1, 1024)
- """
- W_fc1 = weight_variable([7 * 7 * 64, 1024])
- b_fc1 = bias_variable([1024])
-
- h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
- h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
-
- """
- Dropout
- h_fc1 -> h_fc1_drop,
- """
- keep_prob = tf.placeholder("float")
- h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
-
- """
- 第四层 Softmax输出层
- """
- W_fc2 = weight_variable([1024, 10])
- b_fc2 = bias_variable([10])
-
- y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
-
- y_ = tf.placeholder("float", [None, 10])
- cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv))
- train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
- correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
- accuracy = tf.reduce_mean(tf.cast(correct_prediction,"float"))
-
- sess = tf.Session()
- sess.run(tf.global_variables_initializer())
-
- ds = DataSet(mnist.train.images,mnist.train.labels, 50000)
-
-
- for i in range(1000):
- "batch = mnist.train.next_batch(100)"
- image_batch, label_batch = ds.next_batch(100)
- train_step.run(session = sess, feed_dict = {x:image_batch, y_:label_batch,
- keep_prob:0.5})
-
- print("test accuracy %g" %accuracy.eval(session = sess,
- feed_dict = {x:mnist.test.images, y_:mnist.test.labels,
- keep_prob:1.0}))
-
- print("running time is %fs!" % (time.time() - start_time))
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。