当前位置:   article > 正文

六、基于深度学习关键点的指针式表计识别

表计识别

基于深度学习关键点的指针式表计识别

提示:网上有太多的方案都是分割思路,思路很好,但是在制作数据的时候太费时间,据统计:分割数据标注一张需要180s-360s;而关键点标注控制在30s-90s。

温馨提示:更多技术交流请留言



具体实现流程

提示:算法是基于unet语义分割模型和openpose姿态估计模型模改成多任务学习模型,包括关键点检测+指针分割两个并行任务,是整个算法的核心中的核心

  1. yolov8表计检测
  2. 表盘关键点检测和指针检测
  3. 表计矫正以及坐标的变换
  4. 拟合出表盘弧形结构,并计算比值
  5. 根据比值、量程计算出读数

提示:以下是本篇文章正文内容,下面案例可供参考

一、 yolov8表计检测

目标检测就不用多说。该步骤最主要有两个任务,第一,将图像中的表计检测出来;第二,并将每个表计进行分类,为了后面能根据类别配置表盘中的量程。

在这里插入图片描述

二、表盘关键点检测和指针检测

该部分是整个算法的核心,需要将关键点检测和分割整合为一个多任务学习模型。关键点检测参考openpose,分割网络参考unet等主流网络即可。这套算法相较百度的算法(分割刻度和指针)数据标注任务量减轻60%以上,更加的省事,便于优化。
下图是百度的方案
在这里插入图片描述
想知道我的方案吗?那你想象成将刻度变为关键点即可,指针分割道理是一样的。

三、表计矫正以及坐标的变换

将倾斜的表计采用透视变换矫正,并对坐标进行变换。
在这里插入图片描述

三、拟合出表盘的弧形结构,并计算比值

根据矫正后的表计所得关键点,并拟合出表盘结构,并最终得到比值。

三、根据比值、量程计算出读数

最后根据比值、量程计算出具体读数,下图给出的是百分比,没时间转化了,将就用这个图了。
在这里插入图片描述

总结

本方案实现:
环境:pytorch、python=3.7、c++
数据标注时间:本方案60s VS 百度方案360s

提示:所以你还愿意采用标注1张图片需要6分钟的方案吗?
一套可靠的方案,让开发、优化、部署、落地都省事。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Monodyee/article/detail/698006
推荐阅读
相关标签
  

闽ICP备14008679号