赞
踩
- import cv2
- import numpy as np
-
- img = cv2.imread('pic5.PNG')
- gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
- ret, thresh = cv2.threshold(gray, 127, 255, 0)
- contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
- img = cv2.drawContours(img, contours, -1, (0, 255, 0), 3)
- # img = cv2.drawContours(img, contours, 3, (0, 255, 0), 3)
-
- # 获取图像的矩,可以计算出对象的重心
- cnt = contours[0]
- M = cv2.moments(cnt)
- print(M)
-
- # 获取轮廓的面积
- area = cv2.contourArea(cnt)
- print(area)
-
- # 获取轮廓周长
- perimeter = cv2.arcLength(cnt, True)
- print(perimeter)
-
- # 轮廓近似(获取最大轮廓),如带缺口的矩形识别成矩形
- epsilon = 0.1*cv2.arcLength(cnt, True)
- approx = cv2.approxPolyDP(cnt, epsilon, True)
-
- # 凸包, 凸检验
- # 获取凸包
- hull = cv2.convexHull(cnt)
- # 检测是否是凸包
- k = cv2.isContourConvex(cnt)
- print(k)
-
- # 边界矩形,因为我的矩形轮廓所以无效果
- # 直边界矩形,未考虑旋转
- x, y, w, h = cv2.boundingRect(cnt)
- img = cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 2)
- # 旋转的边界矩形,考虑对象旋转
- x, y, w, h = cv2.boundingRect(cnt)
- img = cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 2)
- # 边界矩形的长宽比
- aspect_ratio = float(w)/h
- # 边界矩形的面积
- # 轮廓面积与凸包面积的比
- hull_area = cv2.contourArea(hull)
- solidity = float(area)/hull_area
-
- # 返回对象的方向,长轴和短轴的长度,有问题
- # (x, y), (MA, ma), angle = cv2.fitEllipse(cnt)
-
- # 最小外接圆
- (x, y), radius = cv2.minEnclosingCircle(cnt)
- center = (int(x), int(y))
- radius = int(radius)
- #img = cv2.circle(img, center, radius, (0, 255, 0), 2)
-
- # 椭圆拟合,注意椭圆不要超出图像边界,可能报错
- #ellipse = cv2.fitEllipse(cnt)
- #img = cv2.ellipse(img, ellipse, (0, 255, 0), 2)
-
- # 直线拟合
- rows, cols = img.shape[:2]
- [vx, vy, x, y] = cv2.fitLine(cnt, cv2.DIST_L2, 0, 0.01, 0.01)
- lefty = int((-x*vy/vx) + y)
- righty = int(((cols - x)*vy/vx)+y)
- # img = cv2.line(img, (cols-1, righty), (0, lefty), (0, 255, 0), 2)
-
- # 获取构成对象的所有像素点
- mask = np.zeros(gray.shape, np.uint8)
- cv2.drawContours(mask, [cnt], 0, 255, -1)
- pixelpoints = np.transpose(np.nonzero(mask))
- print(pixelpoints)
- # 最大值最小值及它们的位置
- min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(gray, mask=mask)
-
- # 获取图像的平均颜色及平均灰度
- mean_val = cv2.mean(img, mask=mask)
- print(mean_val)
-
- # 极点-轮廓的最左右上下的点
- leftmost = tuple(cnt[cnt[:, :, 0].argmin()][0])
- rightmost = tuple(cnt[cnt[:, :, 0].argmax()][0])
- topmost = tuple(cnt[cnt[:, :, 1].argmin()][0])
- bottommost = tuple(cnt[cnt[:, :, 1].argmax()][0])
-
- cv2.imshow("img", mask)
- cv2.waitKey(0)
- cv2.destroyAllWindows()
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。