赞
踩
首先参考上一篇的训练过程,这是测试过程,需要用到训练过程的权重。
权重文件
调整数据集路径。
训练和测试时的图像设置相同大小,并设置主干模型的名称同训练时一致。
配置数据集相关信息。
手动添加权重。
设置DataLoader中参数num_workers=0。
替换utils.py中的test_single_volume函数,原网络输出的是0,1,2,3,4像素的图片,分别代表5个类别,直接显示均呈黑色。对此,我们通过像素调整,使每个类别呈现不同的颜色。
def test_single_volume(image, label, net, classes, patch_size=[256, 256], test_save_path=None, case=None, z_spacing=1): image, label = image.squeeze(0).cpu().detach().numpy(), label.squeeze(0).cpu().detach().numpy() _,x, y = image.shape if x != patch_size[0] or y != patch_size[1]: #缩放图像符合网络输入 image = zoom(image, (1,patch_size[0] / x, patch_size[1] / y), order=3) input = torch.from_numpy(image).unsqueeze(0).float().cuda() net.eval() with torch.no_grad(): out = torch.argmax(torch.softmax(net(input), dim=1), dim=1).squeeze(0) out = out.cpu().detach().numpy() if x != patch_size[0] or y != patch_size[1]: #缩放图像至原始大小 prediction = zoom(out, (x / patch_size[0], y / patch_size[1]), order=0) else: prediction = out metric_list = [] for i in range(1, classes): metric_list.append(calculate_metric_percase(prediction == i, label == i)) if test_save_path is not None: a1 = copy.deepcopy(prediction) a2 = copy.deepcopy(prediction) a3 = copy.deepcopy(prediction) a1[a1 == 1] = 255 a1[a1 == 2] = 0 a1[a1 == 3] = 255 a1[a1 == 4] = 20 a2[a2 == 1] = 255 a2[a2 == 2] = 255 a2[a2 == 3] = 0 a2[a2 == 4] = 10 a3[a3 == 1] = 255 a3[a3 == 2] = 77 a3[a3 == 3] = 0 a3[a3 == 4] = 120 a1 = Image.fromarray(np.uint8(a1)).convert('L') a2 = Image.fromarray(np.uint8(a2)).convert('L') a3 = Image.fromarray(np.uint8(a3)).convert('L') prediction = Image.merge('RGB', [a1, a2, a3]) prediction.save(test_save_path+'/'+case+'.png') return metric_list
**方便小伙伴理解这部分代码,特意做了个图,a1,a2,a3分别代表RGB三个通道,开始它们的值通过deepcopy函数直接赋值,故三者的值都是一样的。
这里拿类别1举例:a1[a12]=0代表R通道中输出结果为2的赋值0,
a2[a22]=255代表G通道中输出结果为2的赋值255,
a3[a3==2]=77代表B通道中输出结果为2的赋值77,(0,255,77)对应就是绿色,类别2就是绿色(轮子)。
然后通过Image.merge(‘RGB’, [a1, a2, a3])函数合并三个通道,此时prediction就成了三通道彩色图。
至此,设置完毕,右键run运行。
测试结束后,会在根目录下生成predictions文件夹,文件夹的内容如下。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。