当前位置:   article > 正文

Pytorch离线下载并使用torchvision.models预训练模型_torchvision.models.resnet18()的离线使用

torchvision.models.resnet18()的离线使用

原本直接在IDE中执行models.alexnet(pretrained=True)就行了,但是一直报错,搞得我好不难受
在这里插入图片描述

不用说,肯定是由于网络不好导致模型下载失败,能不能离线下载完之后在本地直接使用?答案是肯定的

其实步骤很简单(但是对于新手要命),就和我们下载软件一样,详细步骤如下:

  1. 复制需要下载的模型地址,粘贴到浏览器地址栏中下载,各种模型的下载地址如下:
1. Resnet:
  model_urls = {
      'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
      'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
      'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
      'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
      'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
  }

2. inception:
 model_urls = {
      Inception v3 ported from TensorFlow
     'inception_v3_google': 'https://download.pytorch.org/models/inception_v3_google-1a9a5a14.pth',
 }

3. Densenet: 
 model_urls = {
     'densenet121': 'https://download.pytorch.org/models/densenet121-a639ec97.pth',
     'densenet169': 'https://download.pytorch.org/models/densenet169-b2777c0a.pth',
     'densenet201': 'https://download.pytorch.org/models/densenet201-c1103571.pth',
     'densenet161': 'https://download.pytorch.org/models/densenet161-8d451a50.pth',
 }

4. Alexnet:
 model_urls = {
     'alexnet': 'https://download.pytorch.org/models/alexnet-owt-4df8aa71.pth',
}

5. vggnet:
 model_urls = {
     'vgg11': 'https://download.pytorch.org/models/vgg11-bbd30ac9.pth',
     'vgg13': 'https://download.pytorch.org/models/vgg13-c768596a.pth',
     'vgg16': 'https://download.pytorch.org/models/vgg16-397923af.pth',
     'vgg19': 'https://download.pytorch.org/models/vgg19-dcbb9e9d.pth',
     'vgg11_bn': 'https://download.pytorch.org/models/vgg11_bn-6002323d.pth',
     'vgg13_bn': 'https://download.pytorch.org/models/vgg13_bn-abd245e5.pth',
     'vgg16_bn': 'https://download.pytorch.org/models/vgg16_bn-6c64b313.pth',
     'vgg19_bn': 'https://download.pytorch.org/models/vgg19_bn-c79401a0.pth',
 }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  1. 这里以Alexnet为例,复制https://download.pytorch.org/models/alexnet-owt-4df8aa71.pth浏览器地址栏中下载
    在这里插入图片描述

大约233M,慢慢下吧,友情提示一下,在手机上下载每秒几M,在电脑下载每秒几kb,推荐在手机上下载好之后,再发送到电脑上

  1. 将下载好的文件剪切到torch缓存文件夹下即可,windos和linux的torch缓存文件夹分别如下:
  • windows:C:\Users\wang1\.cache\torch\checkpoints (wang1是你的电脑用户名)
  • linux:/root/.cache/torch/hub/checkpoints/alexnet-owt-4df8aa71.pth

如下所示:
在这里插入图片描述
4. 然后执行models.alexnet(pretrained=True),发现OK,大功告成!
在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/weixin_40725706/article/detail/351091
推荐阅读
相关标签
  

闽ICP备14008679号