当前位置:   article > 正文

torch学习 (三十九):空间Transformer网络_mnist transformer

mnist transformer

1 引入

  基于MNIST数据集的空间Transformer网络示意。
  参考文献:pytorch中文版。

2 代码

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision
from torchvision import datasets, transforms
import numpy as np
import matplotlib.pyplot as plt

# 设置设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 载入训练集,可以把num_workers调大一点,反正我是出错了,无奈之下智能0
train_loader = torch.utils.data.DataLoader(
    datasets.MNIST(root='.', train=True, download=True,
                   transform=transforms.Compose([
                       transforms.ToTensor(),
                       transforms.Normalize((0.1307,), (0.3081,))
                   ])), batch_size=64, shuffle=True, num_workers=0)
# 载入测试集
test_loader = torch.utils.data.DataLoader(
    datasets.MNIST(root='.', train=False, transform=transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.1307,), (0.3081,))
    ])), batch_size=64, shuffle=True, num_workers=0)


# 空间transformer网络,包含定位网格、网格生成器、采样器
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)
        # 定位网络,对变换参数进行回归
        self.localization = nn.Sequential(
            nn.Conv2d(1, 8, kernel_size=7),
            nn.MaxPool2d(2, stride=2),
            nn.ReLU(True),
            nn.Conv2d(8, 10, kernel_size=5),
            nn.MaxPool2d(2, stride=2),
            nn.ReLU(True)
        )
        # 3 * 2仿射矩阵回归器
        self.fc_loc = nn.Sequential(
            nn.Linear(10 * 3 * 3, 32),
            nn.ReLU(True),
            nn.Linear(32, 3 * 2)
        )
        # 初始化权重和偏置
        self.fc_loc[2].weight.data.zero_()
        self.fc_loc[2].bias.data.copy_(torch.tensor([1, 0, 0, 0, 1, 0],
                                                    dtype=torch.float))

    # 空间转换网络前向传播
    def stn(self, x):
        xs = self.localization(x)
        xs = xs.view(-1, 10 * 3 * 3)
        theta = self.fc_loc(xs)
        theta = theta.view(-1, 2, 3)
        grid = F.affine_grid(theta, x.size())
        x = F.grid_sample(x, grid)
        return x

    # 前向
    def forward(self, x):
        # 输入变换
        x = self.stn(x)
        # 常规传播
        x = F.relu(F.max_pool2d(self.conv1(x), 2))
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)


# 设备迁移及优化器设置
model = Net().to(device)
optimizer = optim.SGD(model.parameters(), lr=0.01)


def train(epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % 500 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                       100. * batch_idx / len(train_loader), loss.item()))

def test():
    with torch.no_grad():
        model.eval()
        test_loss = 0
        correct = 0
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            # sum up batch loss
            test_loss += F.nll_loss(output, target, size_average=False).item()
            # get the index of the max log-probability
            pred = output.max(1, keepdim=True)[1]
            correct += pred.eq(target.view_as(pred)).sum().item()
        test_loss /= len(test_loader.dataset)

        print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'
              .format(test_loss, correct, len(test_loader.dataset),
                      100. * correct / len(test_loader.dataset)))


def convert_image_np(inp):
    """转换tensor为numpy图像"""
    inp = inp.numpy().transpose((1, 2, 0))
    mean = np.array([0.485, 0.456, 0.406])
    std = np.array([0.229, 0.224, 0.225])
    inp = std * inp + mean
    inp = np.clip(inp, 0, 1)
    return inp

# 可视化输入图像和相应STN后的结果
def visualize_stn():
    with torch.no_grad():
        # 获取图像批次
        data = next(iter(test_loader))[0].to(device)
        input_tensor = data.cpu()
        transformed_input_tensor = model.stn(data).cpu()
        in_grid = convert_image_np(
        torchvision.utils.make_grid(input_tensor))
        out_grid = convert_image_np(
        torchvision.utils.make_grid(transformed_input_tensor))
        # 绘制结果
        f, axarr = plt.subplots(1, 2)
        axarr[0].imshow(in_grid)
        axarr[0].set_title('Dataset Images')
        axarr[1].imshow(out_grid)
        axarr[1].set_title('Transformed Images')
        
# 开始训练及测试
for epoch in range(1, 20 + 1):
    train(epoch)
    test()

# 可视化
visualize_stn()
plt.ioff()
plt.show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154

3 结果

3.1 分类

Train Epoch: 1 [0/60000 (0%)]	Loss: 2.340652
Train Epoch: 1 [32000/60000 (53%)]	Loss: 1.166227

Test set: Average loss: 0.2037, Accuracy: 9438/10000 (94%)

Train Epoch: 2 [0/60000 (0%)]	Loss: 0.349879
Train Epoch: 2 [32000/60000 (53%)]	Loss: 0.405450

Test set: Average loss: 1.3985, Accuracy: 6490/10000 (65%)

Train Epoch: 3 [0/60000 (0%)]	Loss: 2.455684
Train Epoch: 3 [32000/60000 (53%)]	Loss: 0.238986

Test set: Average loss: 0.0862, Accuracy: 9749/10000 (97%)

Train Epoch: 4 [0/60000 (0%)]	Loss: 0.117145
Train Epoch: 4 [32000/60000 (53%)]	Loss: 0.158333

Test set: Average loss: 0.0740, Accuracy: 9767/10000 (98%)

Train Epoch: 5 [0/60000 (0%)]	Loss: 0.146124
Train Epoch: 5 [32000/60000 (53%)]	Loss: 0.277766

Test set: Average loss: 0.0631, Accuracy: 9804/10000 (98%)

Train Epoch: 6 [0/60000 (0%)]	Loss: 0.095257
Train Epoch: 6 [32000/60000 (53%)]	Loss: 0.145955

Test set: Average loss: 0.0741, Accuracy: 9785/10000 (98%)

Train Epoch: 7 [0/60000 (0%)]	Loss: 0.130261
Train Epoch: 7 [32000/60000 (53%)]	Loss: 0.151724

Test set: Average loss: 0.0743, Accuracy: 9781/10000 (98%)

Train Epoch: 8 [0/60000 (0%)]	Loss: 0.183105
Train Epoch: 8 [32000/60000 (53%)]	Loss: 0.089648

Test set: Average loss: 0.0695, Accuracy: 9779/10000 (98%)

Train Epoch: 9 [0/60000 (0%)]	Loss: 0.079548
Train Epoch: 9 [32000/60000 (53%)]	Loss: 0.108383

Test set: Average loss: 0.0479, Accuracy: 9854/10000 (99%)

Train Epoch: 10 [0/60000 (0%)]	Loss: 0.242064
Train Epoch: 10 [32000/60000 (53%)]	Loss: 0.055248

Test set: Average loss: 0.0575, Accuracy: 9827/10000 (98%)

Train Epoch: 11 [0/60000 (0%)]	Loss: 0.439416
Train Epoch: 11 [32000/60000 (53%)]	Loss: 0.312931

Test set: Average loss: 0.0443, Accuracy: 9855/10000 (99%)

Train Epoch: 12 [0/60000 (0%)]	Loss: 0.245579
Train Epoch: 12 [32000/60000 (53%)]	Loss: 0.081791

Test set: Average loss: 0.0692, Accuracy: 9801/10000 (98%)

Train Epoch: 13 [0/60000 (0%)]	Loss: 0.215368
Train Epoch: 13 [32000/60000 (53%)]	Loss: 0.481491

Test set: Average loss: 0.0438, Accuracy: 9865/10000 (99%)

Train Epoch: 14 [0/60000 (0%)]	Loss: 0.067364
Train Epoch: 14 [32000/60000 (53%)]	Loss: 0.153307

Test set: Average loss: 0.0829, Accuracy: 9749/10000 (97%)

Train Epoch: 15 [0/60000 (0%)]	Loss: 0.131934
Train Epoch: 15 [32000/60000 (53%)]	Loss: 0.050842

Test set: Average loss: 0.0469, Accuracy: 9859/10000 (99%)

Train Epoch: 16 [0/60000 (0%)]	Loss: 0.327519
Train Epoch: 16 [32000/60000 (53%)]	Loss: 0.077101

Test set: Average loss: 0.0396, Accuracy: 9870/10000 (99%)

Train Epoch: 17 [0/60000 (0%)]	Loss: 0.134313
Train Epoch: 17 [32000/60000 (53%)]	Loss: 0.076286

Test set: Average loss: 0.0423, Accuracy: 9875/10000 (99%)

Train Epoch: 18 [0/60000 (0%)]	Loss: 0.078192
Train Epoch: 18 [32000/60000 (53%)]	Loss: 0.207639

Test set: Average loss: 0.0410, Accuracy: 9876/10000 (99%)

Train Epoch: 19 [0/60000 (0%)]	Loss: 0.108308
Train Epoch: 19 [32000/60000 (53%)]	Loss: 0.045296

Test set: Average loss: 0.0493, Accuracy: 9852/10000 (99%)

Train Epoch: 20 [0/60000 (0%)]	Loss: 0.106333
Train Epoch: 20 [32000/60000 (53%)]	Loss: 0.022837

Test set: Average loss: 0.0377, Accuracy: 9884/10000 (99%)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99

3.2 可视化

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/weixin_40725706/article/detail/371514
推荐阅读
相关标签
  

闽ICP备14008679号