当前位置:   article > 正文

什么是Redis_.什么是redis

.什么是redis

一、什么是redis
首先要说redis,应该先说一下nosql,
NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,
泛指非关系型的数据库。随着互联网web2.0网站的兴起,传统的关系数据库在应付web2.0网站,特别是超大规模和高并发的SNS类型的web2.0纯动态网站已经显得力不从心,暴露了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展。NoSQL数据库的产生就是为了解决大规模数据集合多重数据种类带来的挑战,尤其是大数据应用难题,包括超大规模数据的存储。
(例如谷歌或Facebook每天为他们的用户收集万亿比特的数据)。这些类型的数据存储不需要固定的模式,无需多余操作就可以横向扩展。

Redis:REmote DIctionary Server(远程字典服务器)是完全开源免费的,用C语言编写的,遵守BSD协议,是一个高性能的(key/value)分布式内存数据库,基于内存运行并支持持久化的NoSQL数据库,是当前最热门的NoSql数据库之一,也被人们称为数据结构服务器。

二、redis使用场景
1、热点数据的缓存
由于redis访问速度块、支持的数据类型比较丰富,所以redis很适合用来存储热点数据,另外结合expire,我们可以设置过期时间然后再进行缓存更新操作,这个功能最为常见,我们几乎所有的项目都有所运用。

2、限时业务的运用
redis中可以使用expire命令设置一个键的生存时间,到时间后redis会删除它。利用这一特性可以运用在限时的优惠活动信息、手机验证码等业务场景。

3、计数器相关问题
redis由于incrby命令可以实现原子性的递增,所以可以运用于高并发的秒杀活动、分布式序列号的生成、具体业务还体现在比如限制一个手机号发多少条短信、一个接口一分钟限制多少请求、一个接口一天限制调用多少次等等。

4、排行榜相关问题
关系型数据库在排行榜方面查询速度普遍偏慢,所以可以借助redis的SortedSet进行热点数据的排序。

在奶茶活动中,我们需要展示各个部门的点赞排行榜, 所以我针对每个部门做了一个SortedSet,然后以用户的openid作为上面的username,以用户的点赞数作为上面的score, 然后针对每个用户做一个hash,通过zrangebyscore就可以按照点赞数获取排行榜,然后再根据username获取用户的hash信息,这个当时在实际运用中性能体验也蛮不错的。

5、分布式锁
这个主要利用redis的setnx命令进行,setnx:"set if not exists"就是如果不存在则成功设置缓存同时返回1,否则返回0 ,这个特性在俞你奔远方的后台中有所运用,因为我们服务器是集群的,定时任务可能在两台机器上都会运行,所以在定时任务中首先 通过setnx设置一个lock,如果成功设置则执行,如果没有成功设置,则表明该定时任务已执行。 当然结合具体业务,我们可以给这个lock加一个过期时间,比如说30分钟执行一次的定时任务,那么这个过期时间设置为小于30分钟的一个时间 就可以,这个与定时任务的周期以及定时任务执行消耗时间相关。

当然我们可以将这个特性运用于其他需要分布式锁的场景中,结合过期时间主要是防止死锁的出现。

6、延时操作
这个目前我做过相关测试,但是还没有运用到我们的实际项目中,下面我举个该特性的应用场景。 比如在订单生产后我们占用了库存,10分钟后去检验用户是够真正购买,如果没有购买将该单据设置无效,同时还原库存。 由于redis自2.8.0之后版本提供Keyspace Notifications功能,允许客户订阅Pub/Sub频道,以便以某种方式接收影响Redis数据集的事件。 所以我们对于上面的需求就可以用以下解决方案,我们在订单生产时,设置一个key,同时设置10分钟后过期, 我们在后台实现一个监听器,监听key的实效,监听到key失效时将后续逻辑加上。 当然我们也可以利用rabbitmq、activemq等消息中间件的延迟队列服务实现该需求。

7、分页、模糊搜索
redis的set集合中提供了一个zrangebylex方法,语法如下:

ZRANGEBYLEX key min max [LIMIT offset count]

通过ZRANGEBYLEX zset - + LIMIT 0 10 可以进行分页数据查询,其中- +表示获取全部数据

zrangebylex key min max 这个就可以返回字典区间的数据,利用这个特性可以进行模糊查询功能,这个也是目前我在redis中发现的唯一一个支持对存储内容进行模糊查询的特性。

前几天我通过这个特性,对学校数据进行了模拟测试,学校数据60万左右,响应时间在700ms左右,比mysql的like查询稍微快一点,但是由于它可以避免大量的数据库io操作,所以总体还是比直接mysql查询更利于系统的性能保障。

8、点赞、好友等相互关系的存储
Redis set对外提供的功能与list类似是一个列表的功能,特殊之处在于set是可以自动排重的,当你需要存储一个列表数据,又不希望出现重复数据时,set是一个很好的选择,并且set提供了判断某个成员是否在一个set集合内的重要接口,这个也是list所不能提供的。 又或者在微博应用中,每个用户关注的人存在一个集合中,就很容易实现求两个人的共同好友功能。

这个在奶茶活动中有运用,就是利用set存储用户之间的点赞关联的,另外在点赞前判断是否点赞过就利用了sismember方法,当时这个接口的响应时间控制在10毫秒内,十分高效。

9、队列
由于redis有list push和list pop这样的命令,所以能够很方便的执行队列操作。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/weixin_40725706/article/detail/388201
推荐阅读
相关标签
  

闽ICP备14008679号