当前位置:   article > 正文

算法沉淀——动态规划之路径问题(leetcode真题剖析)_动态规划路径问题

动态规划路径问题

在这里插入图片描述

01.不同路径

题目链接:https://leetcode.cn/problems/unique-paths/

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

示例 1:

输入:m = 3, n = 7
输出:28
  • 1
  • 2

示例 2:

输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右
3. 向下 -> 向右 -> 向下
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

示例 3:

输入:m = 7, n = 3
输出:28
  • 1
  • 2

示例 4:

输入:m = 3, n = 3
输出:6
  • 1
  • 2

提示:

  • 1 <= m, n <= 100
  • 题目数据保证答案小于等于 2 * 109

思路

这是一个典型的动态规划问题。以下是解题的一般步骤:

  1. 状态表示: 对于路径类问题,有两种状态表示方式,选择其中之一。这里选择从起始位置出发,到达 [i, j] 位置的方式:

    dp[i][j] 表示从起始位置到达 [i, j] 位置的路径数。

  2. 状态转移方程: 分析从 [i, j] 位置出发的一小步,有两种情况:

    • [i-1, j] 位置向下走一步,转移到 [i, j] 位置;
    • [i, j-1] 位置向右走一步,转移到 [i, j] 位置。

    因此,状态转移方程为:dp[i][j] = dp[i-1][j] + dp[i][j-1]

  3. 初始化:dp 数组前添加一行和一列,初始化 dp[0][1] 位置为 1

  4. 填表顺序: 从上往下,每一行从左往右填写。

  5. 返回值: 返回 dp[m][n] 的值,表示从起始位置到达终点位置的路径数。

代码

class Solution {
public:
    int uniquePaths(int m, int n) {
        vector<vector<int>> dp(m+1,vector<int>(n+1,0));
        dp[1][1]=1;
        for(int i=1;i<=m;i++){
            for(int j=1;j<=n;j++){
                if(i==1&&j==1) continue;
                dp[i][j]=dp[i-1][j]+dp[i][j-1];
            }
        }
        return dp[m][n];
    }
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

02.不同路径 II

题目链接:https://leetcode.cn/problems/unique-paths-ii/

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 10 来表示。

示例 1:

输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

示例 2:

输入:obstacleGrid = [[0,1],[0,0]]
输出:1 
  • 1
  • 2

提示:

  • m == obstacleGrid.length
  • n == obstacleGrid[i].length
  • 1 <= m, n <= 100
  • obstacleGrid[i][j]01

思路

根据上题分析,这题如果某个位置 [i - 1, j] 或者 [i, j - 1] 上存在障碍物,说明从这两个位置到达 [i, j] 的路径是被阻挡的,因此在计算 dp[i][j](表示从起点到达 [i, j] 的路径数)时,可以直接将 dp[i][j] 设为零,其余同上题。

代码

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        int m=obstacleGrid.size(),n=obstacleGrid[0].size();
        vector<vector<int>> dp(m+1,vector<int>(n+1,0));
        dp[1][0]=1;
        for(int i=1;i<=m;++i)
            for(int j=1;j<=n;++j)
                if(obstacleGrid[i-1][j-1]==0)
                    dp[i][j]=dp[i-1][j]+dp[i][j-1];
        return dp[m][n];
    }
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

03.珠宝的最高价值

题目链接:https://leetcode.cn/problems/li-wu-de-zui-da-jie-zhi-lcof/

现有一个记作二维矩阵 frame 的珠宝架,其中 frame[i][j] 为该位置珠宝的价值。拿取珠宝的规则为:

  • 只能从架子的左上角开始拿珠宝
  • 每次可以移动到右侧或下侧的相邻位置
  • 到达珠宝架子的右下角时,停止拿取

注意:珠宝的价值都是大于 0 的。除非这个架子上没有任何珠宝,比如 frame = [[0]]

示例 1:

输入: frame = [[1,3,1],[1,5,1],[4,2,1]]
输出: 12
解释: 路径 1→3→5→2→1 可以拿到最高价值的珠宝
  • 1
  • 2
  • 3

提示:

  • 0 < frame.length <= 200
  • 0 < frame[0].length <= 200

思路

在处理这类问题时,动态规划的状态表可以采用两种主要形式:一是从某个位置出发,描述到达其他位置的情况;二是从起始位置到达某个位置,描述达到该位置时的状态。在这里,我们选择第二种方式定义状态表:

我们使用 dp[i][j] 表示从起始位置到达 [i, j] 位置时的最大价值。在考虑到达 [i, j] 的两种方式时,即从上方 [i - 1, j] 或从左侧 [i, j - 1] 到达,我们需要选择其中最大价值的路径。因此,状态转移方程为:

dp[i][j]=max(dp[i-1][j],dp[i][j-1])+frame[i-1][j-1];

在初始化过程中,可以添加一个辅助结点,并将所有值初始化为零。填表的顺序是从上往下逐行填写,每一行从左往右。最后,我们应该返回 dp[m][n] 的值,表示在整个网格中的最大价值。

代码

class Solution {
public:
    int jewelleryValue(vector<vector<int>>& frame) {
        int m=frame.size(),n=frame[0].size();
        vector<vector<int>> dp(m+1,vector<int>(n+1,0));

        for(int i=1;i<=m;++i)
            for(int j=1;j<=n;++j)
                dp[i][j]=max(dp[i-1][j],dp[i][j-1])+frame[i-1][j-1];
        
        return dp[m][n];
    }
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

04.下降路径最小和

题目链接:https://leetcode.cn/problems/minimum-falling-path-sum/

给你一个 n x n方形 整数数组 matrix ,请你找出并返回通过 matrix下降路径最小和

下降路径 可以从第一行中的任何元素开始,并从每一行中选择一个元素。在下一行选择的元素和当前行所选元素最多相隔一列(即位于正下方或者沿对角线向左或者向右的第一个元素)。具体来说,位置 (row, col) 的下一个元素应当是 (row + 1, col - 1)(row + 1, col) 或者 (row + 1, col + 1)

示例 1:

输入:matrix = [[2,1,3],[6,5,4],[7,8,9]]
输出:13
解释:如图所示,为和最小的两条下降路径
  • 1
  • 2
  • 3

示例 2:

输入:matrix = [[-19,57],[-40,-5]]
输出:-59
解释:如图所示,为和最小的下降路径
  • 1
  • 2
  • 3

提示:

  • n == matrix.length == matrix[i].length
  • 1 <= n <= 100
  • -100 <= matrix[i][j] <= 100

在处理这种「路径类」的问题时,动态规划的状态表一般有两种常见形式:一是从某个位置出发,描述到达其他位置的情况;二是从起始位置到达某个位置,描述达到该位置时的状态。在这里,我们选择第二种方式定义状态表:

我们使用 dp[i][j] 表示到达 [i, j] 位置时,所有下降路径中的最小和。在考虑到达 [i, j] 的三种方式时,即从正上方 [i - 1, j]、左上方 [i - 1, j - 1] 和右上方 [i - 1, j + 1] 转移到 [i, j] 位置,我们需要选择三者中的最小值,再加上矩阵在 [i, j] 位置的值。因此,状态转移方程为:

dp[i][j]=matrix[i-1][j-1]+min(dp[i-1][j-1],min(dp[i-1][j],dp[i-1][j+1]));

在初始化过程中,我们添加一个辅助结点,将其值初始化为正无穷大,以保证后续填表时是正确的。同时,需要注意下标的映射关系。在本题中,我们添加了一行和两列,将第一行的值初始化为 0。填表的顺序是从上往下逐行填写。最后,我们不是返回 dp[m][n] 的值,而是返回 dp 表中最后一行的最小值,因为题目要求只要到达最后一行即可。

代码

class Solution {
public:
    int minFallingPathSum(vector<vector<int>>& matrix) {
        int m=matrix.size(),n=matrix[0].size();
        vector<vector<int>> dp(n+1,vector<int>(n+2,INT_MAX));
        for(int i=0;i<n+2;i++) dp[0][i]=0;

        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++)
                dp[i][j]=matrix[i-1][j-1]+min(dp[i-1][j-1],min(dp[i-1][j],dp[i-1][j+1]));
        
        int ret=INT_MAX;
        for(int i=1;i<=n;i++)
            ret=min(ret,dp[n][i]);

        return ret;
    }
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

05.最小路径和

题目链接:https://leetcode.cn/problems/minimum-path-sum/

给定一个包含非负整数的 *m* x *n* 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

**说明:**每次只能向下或者向右移动一步。

示例 1:

输入:grid = [[1,3,1],[1,5,1],[4,2,1]]
输出:7
解释:因为路径 1→3→1→1→1 的总和最小。
  • 1
  • 2
  • 3

示例 2:

输入:grid = [[1,2,3],[4,5,6]]
输出:12
  • 1
  • 2

提示:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 200
  • 0 <= grid[i][j] <= 200

思路

在处理这种路径类问题时,我们通常选择两种状态表现形式:一是从某个位置出发,描述到达其他位置的情况;二是从起始位置到达某个位置,描述达到该位置时的状态。在这里,我们选择第二种方式定义状态表:

我们使用 dp[i][j] 表示到达 [i, j] 位置处的最小路径和。在分析 dp[i][j] 的情况时,我们考虑到达 [i, j] 位置之前的一小步有两种情况:一是从上方 [i - 1, j] 向下走一步,转移到 [i, j] 位置;二是从左方 [i, j - 1] 向右走一步,转移到 [i, j] 位置。由于我们要找的是最小路径,因此只需要这两种情况下的最小值,再加上 [i, j] 位置上本身的值即可。

也就是说,状态转移方程为:dp[i][j]=min(dp[i-1][j],dp[i][j-1])+grid[i-1][j-1];

在初始化过程中,我们可以在最前面加上一个「辅助结点」,帮助我们初始化。使用这种技巧需要注意两个点:一是辅助结点里面的值要保证后续填表是正确的;二是下标的映射关系。在本题中,添加了一行和一列,所有位置的值可以初始化为无穷大,然后让 dp[0][1] = dp[1][0] = 1 即可。

填表的顺序是从上往下逐行填写,每一行从左往右。最后,我们返回 dp 表中最后一个位置的值,即 dp[m][n]

代码

class Solution {
public:
    int minPathSum(vector<vector<int>>& grid) {
        int m=grid.size(),n=grid[0].size();
        vector<vector<int>> dp(m+1,vector<int>(n+1,INT_MAX));
        dp[0][1]=dp[1][0]=0;
        for(int i=1;i<=m;i++)
            for(int j=1;j<=n;j++)
                dp[i][j]=min(dp[i-1][j],dp[i][j-1])+grid[i-1][j-1];
        
        return dp[m][n];
    }
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

06.地下城游戏

题目链接:https://leetcode.cn/problems/dungeon-game/

恶魔们抓住了公主并将她关在了地下城 dungeon右下角 。地下城是由 m x n 个房间组成的二维网格。我们英勇的骑士最初被安置在 左上角 的房间里,他必须穿过地下城并通过对抗恶魔来拯救公主。

骑士的初始健康点数为一个正整数。如果他的健康点数在某一时刻降至 0 或以下,他会立即死亡。

有些房间由恶魔守卫,因此骑士在进入这些房间时会失去健康点数(若房间里的值为负整数,则表示骑士将损失健康点数);其他房间要么是空的(房间里的值为 0),要么包含增加骑士健康点数的魔法球(若房间里的值为正整数,则表示骑士将增加健康点数)。

为了尽快解救公主,骑士决定每次只 向右向下 移动一步。

返回确保骑士能够拯救到公主所需的最低初始健康点数。

**注意:**任何房间都可能对骑士的健康点数造成威胁,也可能增加骑士的健康点数,包括骑士进入的左上角房间以及公主被监禁的右下角房间。

示例 1:

输入:dungeon = [[-2,-3,3],[-5,-10,1],[10,30,-5]]
输出:7
解释:如果骑士遵循最佳路径:右 -> 右 -> 下 -> 下 ,则骑士的初始健康点数至少为 7 。
  • 1
  • 2
  • 3

示例 2:

输入:dungeon = [[0]]
输出:1 
  • 1
  • 2

提示:

  • m == dungeon.length
  • n == dungeon[i].length
  • 1 <= m, n <= 200
  • -1000 <= dungeon[i][j] <= 1000

思路

这道题可以通过动态规划求解,首先需要定义状态表现形式。如果我们定义为“从起点开始,到达 [i, j] 位置的时候,所需的最低初始健康点数”,分析状态转移时可能会受到后续路径的影响。因此,更合适的状态表现形式是“从 [i, j] 位置出发,到达终点时所需要的最低初始健康点数”。

综上,我们定义状态表达为:dp[i][j]表示:从 [i, j] 位置出发,到达终点时所需的最低初始健康点数。

在状态转移方程中,我们考虑从 [i, j] 位置出发的两种选择: i. 向右走到终点,即从 [i, j] 到 [i, j + 1]; ii. 向下走到终点,即从 [i, j] 到 [i + 1, j]。

对于这两种选择,我们需要选择使得到达终点时的初始健康点数最小的路径。因此,状态转移方程为: dp[i][j]=min(dp[i+1][j],dp[i][j+1])-dungeon[i][j];

然而,由于 dungeon[i][j] 可能是一个较大的正数,计算得到的dp[i][j]的值可能会小于等于 0。如果初始健康点数小于等于 0,马上死亡,因此我们需要处理这种情况,将 dp[i][j] 与 1 取最大值:dp[i][j]=max(1,dp[i][j]);

在初始化阶段,我们在最前面加上一个“辅助结点”来帮助初始化,需要注意辅助结点里面的值要保证后续填表是正确的,以及下标的映射关系。在本题中,我们在 dp 表的最后一行和最后一列分别添加一行和一列,将所有的值初始化为无穷大,然后让 dp[m][n - 1] = dp[m - 1][n] = 1

填表的顺序是从下往上逐行填写,每一行从右往左。最后,我们返回 dp[0][0] 的值。

代码

class Solution {
public:
    int calculateMinimumHP(vector<vector<int>>& dungeon) {
        int m=dungeon.size(),n=dungeon[0].size();
        vector<vector<int>> dp(m+1,vector<int>(n+1,INT_MAX));
        dp[m][n-1]=dp[m-1][n]=1;

        for(int i=m-1;i>=0;i--)
            for(int j=n-1;j>=0;j--)
            {
                dp[i][j]=min(dp[i+1][j],dp[i][j+1])-dungeon[i][j];
                dp[i][j]=max(1,dp[i][j]);
            }
        
        return dp[0][0];
    }
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/weixin_40725706/article/detail/484194
推荐阅读
相关标签
  

闽ICP备14008679号