赞
踩
发生在热带太平洋上的厄尔尼诺-南方涛动(ENSO)现象是地球上最强、最显著的年际气候信号。通过大气或海洋遥相关过程,经常会引发洪涝、干旱、高温、雪灾等极端事件,对全球的天气、气候以及粮食产量具有重要的影响。准确预测ENSO,是提高东亚和全球气候预测水平和防灾减灾的关键。
本次赛题是一个时间序列预测问题。基于历史气候观测和模式模拟数据,利用T时刻过去12个月(包含T时刻)的时空序列(气象因子),构建预测ENSO的深度学习模型,预测未来1-24个月的Nino3.4指数,如下图所示:
本次比赛使用的数据包括CMIP5/6模式的历史模拟数据和美国SODA模式重建的近100多年历史观测同化数据。每个样本包含以下气象及时空变量:海表温度异常(SST),热含量异常(T300),纬向风异常(Ua),经向风异常(Va),数据维度为(year,month,lat,lon)。对于训练数据提供对应月份的Nino3.4 index标签数据。
每个数据样本第一维度(year)表征数据所对应起始年份,对于CMIP数据共4645年,其中1-2265为CMIP6中15个模式提供的151年的历史模拟数据(总共:151年 *15 个模式=2265);2266-4645为CMIP5中17个模式提供的140年的历史模拟数据(总共:140年 *17 个模式=2380)。对于历史观测同化数据为美国提供的SODA数据。
其中每个样本第二维度(mouth)表征数据对应的月份,对于训练数据均为36,对应的从当前年份开始连续三年数据(从1月开始,共36月),比如:
SODA_train.nc中[0,0:36,:,:]为第1-第3年逐月的历史观测数据;
SODA_train.nc中[1,0:36,:,:]为第2-第4年逐月的历史观测数据;
…,
SODA_train.nc中[99,0:36,:,:]为第100-102年逐月的历史观测数据。
和
CMIP_train.nc中[0,0:36,:,:]为CMIP6第一个模式提供的第1-第3年逐月的历史模拟数据;
…,
CMIP_train.nc中[150,0:36,:,:]为CMIP6第一个模式提供的第151-第153年逐月的历史模拟数据;
CMIP_train.nc中[151,0:36,:,:]为CMIP6第二个模式提供的第1-第3年逐月的历史模拟数据;
…,
CMIP_train.nc中[2265,0:36,:,:]为CMIP5第一个模式提供的第1-第3年逐月的历史模拟数据;
…,
CMIP_train.nc中[2405,0:36,:,:]为CMIP5第二个模式提供的第1-第3年逐月的历史模拟数据;
…,
CMIP_train.nc中[4644,0:36,:,:]为CMIP5第17个模式提供的第140-第142年逐月的历史模拟数据。
其中每个样本第三、第四维度分别代表经纬度(南纬55度北纬60度,东经0360度),所有数据的经纬度范围相同。
标签数据为Nino3.4 SST异常指数,数据维度为(year,month)。
CMIP(SODA)_train.nc对应的标签数据当前时刻Nino3.4 SST异常指数的三个月滑动平均值,因此数据维度与维度介绍同训练数据一致
注:三个月滑动平均值为当前月与未来两个月的平均值。
测试用的初始场(输入)数据为国际多个海洋资料同化结果提供的随机抽取的n段12个时间序列,数据格式采用NPY格式保存,维度为(12,lat,lon, 4),12为t时刻及过去11个时刻,4为预测因子,并按照SST,T300,Ua,Va的顺序存放。
测试集文件序列的命名规则:test_编号_起始月份_终止月份.npy,如test_00001_01_12_.npy。
评分细则说明: 根据所提供的n个测试数据,对模型进行测试,得到n组未来1-24个月的序列选取对应预测时效的n个数据与标签值进行计算相关系数和均方根误差,如下图所示。并计算得分。计算公式为:
S c o r e = 2 3 ∗ a c c s k i l l − R M S E Score = \frac{2}{3} * accskill - RMSE Score=32∗accskill−RMSE
其中,
a c c s k i l l = ∑ i = 1 24 a ∗ l n ( i ) ∗ c o r i , ( i ≤ , a = 1.5 ; 5 ≤ i ≤ 11 , a = 2 ; 12 ≤ i ≤ 18 , a = 3 ; 19 ≤ i , a = 4 ) accskill = \sum_{i=1}^{24} a * ln(i) * cor_i, \\ (i \le,a = 1.5; 5 \le i \le 11, a= 2; 12 \le i \le 18,a=3;19 \le i, a = 4) accskill=i=1∑24a∗ln(i)∗cori,(i≤,a=1.5;5≤i≤11,a=2;12≤i≤18,a=3;19≤i,a=4)
而:
c o r = ∑ ( X − ( ˉ X ) ) ∑ ( Y − ( ˉ Y ) ∑ ( X − X ˉ ) 2 ) ∑ ( Y − Y ˉ ) 2 ) cor = \frac{\sum(X-\bar(X))\sum(Y-\bar(Y)}{\sqrt{\sum(X-\bar{X})^2)\sum(Y-\bar{Y})^2)}} cor=∑(X−Xˉ)2)∑(Y−Yˉ)2) ∑(X−(ˉX))∑(Y−(ˉY)
R M S E = ∑ i = 1 24 r m s e i , RMSE = \sum_{i=1}^{24} rmse_i, RMSE=i=1∑24rmsei,
## 工具包导入&数据读取 ### 工具包导入 ''' 安装工具 # !pip install netCDF4 ''' import pandas as pd import numpy as np import tensorflow as tf from tensorflow.keras.optimizers import Adam import matplotlib.pyplot as plt import scipy from netCDF4 import Dataset import netCDF4 as nc import gc %matplotlib inline
标签数据为Nino3.4 SST异常指数,数据维度为(year,month)。
CMIP(SODA)_train.nc对应的标签数据当前时刻Nino3.4 SST异常指数的三个月滑动平均值,因此数据维度与维度介绍同训练数据一致
注:三个月滑动平均值为当前月与未来两个月的平均值。
label_path = './data/SODA_label.nc' label_trans_path = './data/' nc_label = Dataset(label_path,'r') years = np.array(nc_label['year'][:]) months = np.array(nc_label['month'][:]) year_month_index = [] vs = [] for i,year in enumerate(years): for j,month in enumerate(months): year_month_index.append('year_{}_month_{}'.format(year,month)) vs.append(np.array(nc_label['nino'][i,j])) df_SODA_label = pd.DataFrame({'year_month':year_month_index}) df_SODA_label['year_month'] = year_month_index df_SODA_label['label'] = vs df_SODA_label.to_csv(label_trans_path + 'df_SODA_label.csv',index = None)
df_SODA_label.head()
year_month | label | |
---|---|---|
0 | year_1_month_1 | -0.40720701217651367 |
1 | year_1_month_2 | -0.20244435966014862 |
2 | year_1_month_3 | -0.10386104136705399 |
3 | year_1_month_4 | -0.02910841442644596 |
4 | year_1_month_5 | -0.13252995908260345 |
SODA_train.nc中[0,0:36,:,:]为第1-第3年逐月的历史观测数据;
SODA_train.nc中[1,0:36,:,:]为第2-第4年逐月的历史观测数据;
…,
SODA_train.nc中[99,0:36,:,:]为第100-102年逐月的历史观测数据。
SODA_path = './data/SODA_train.nc'
nc_SODA = Dataset(SODA_path,'r')
index为年月; columns为lat和lon的组合
def trans_df(df, vals, lats, lons, years, months):
'''
(100, 36, 24, 72) -- year, month,lat,lon
'''
for j,lat_ in enumerate(lats):
for i,lon_ in enumerate(lons):
c = 'lat_lon_{}_{}'.format(int(lat_),int(lon_))
v = []
for y in range(len(years)):
for m in range(len(months)):
v.append(vals[y,m,j,i])
df[c] = v
return df
year_month_index = [] years = np.array(nc_SODA['year'][:]) months = np.array(nc_SODA['month'][:]) lats = np.array(nc_SODA['lat'][:]) lons = np.array(nc_SODA['lon'][:]) for year in years: for month in months: year_month_index.append('year_{}_month_{}'.format(year,month)) df_sst = pd.DataFrame({'year_month':year_month_index}) df_t300 = pd.DataFrame({'year_month':year_month_index}) df_ua = pd.DataFrame({'year_month':year_month_index}) df_va = pd.DataFrame({'year_month':year_month_index})
%%time
df_sst = trans_df(df = df_sst, vals = np.array(nc_SODA['sst'][:]), lats = lats, lons = lons, years = years, months = months)
df_t300 = trans_df(df = df_t300, vals = np.array(nc_SODA['t300'][:]), lats = lats, lons = lons, years = years, months = months)
df_ua = trans_df(df = df_ua, vals = np.array(nc_SODA['ua'][:]), lats = lats, lons = lons, years = years, months = months)
df_va = trans_df(df = df_va, vals = np.array(nc_SODA['va'][:]), lats = lats, lons = lons, years = years, months = months)
label_trans_path = './data/'
df_sst.to_csv(label_trans_path + 'df_sst_SODA.csv',index = None)
df_t300.to_csv(label_trans_path + 'df_t300_SODA.csv',index = None)
df_ua.to_csv(label_trans_path + 'df_ua_SODA.csv',index = None)
df_va.to_csv(label_trans_path + 'df_va_SODA.csv',index = None)
label_path = './data/CMIP_label.nc' label_trans_path = './data/' nc_label = Dataset(label_path,'r') years = np.array(nc_label['year'][:]) months = np.array(nc_label['month'][:]) year_month_index = [] vs = [] for i,year in enumerate(years): for j,month in enumerate(months): year_month_index.append('year_{}_month_{}'.format(year,month)) vs.append(np.array(nc_label['nino'][i,j])) df_CMIP_label = pd.DataFrame({'year_month':year_month_index}) df_CMIP_label['year_month'] = year_month_index df_CMIP_label['label'] = vs df_CMIP_label.to_csv(label_trans_path + 'df_CMIP_label.csv',index = None)
df_CMIP_label.head()
year_month | label | |
---|---|---|
0 | year_1_month_1 | -0.26102548837661743 |
1 | year_1_month_2 | -0.1332537680864334 |
2 | year_1_month_3 | -0.014831557869911194 |
3 | year_1_month_4 | 0.10506672412157059 |
4 | year_1_month_5 | 0.24070978164672852 |
CMIP_train.nc中[0,0:36,:,:]为CMIP6第一个模式提供的第1-第3年逐月的历史模拟数据;
…,
CMIP_train.nc中[150,0:36,:,:]为CMIP6第一个模式提供的第151-第153年逐月的历史模拟数据;
CMIP_train.nc中[151,0:36,:,:]为CMIP6第二个模式提供的第1-第3年逐月的历史模拟数据;
…,
CMIP_train.nc中[2265,0:36,:,:]为CMIP5第一个模式提供的第1-第3年逐月的历史模拟数据;
…,
CMIP_train.nc中[2405,0:36,:,:]为CMIP5第二个模式提供的第1-第3年逐月的历史模拟数据;
…,
CMIP_train.nc中[4644,0:36,:,:]为CMIP5第17个模式提供的第140-第142年逐月的历史模拟数据。
其中每个样本第三、第四维度分别代表经纬度(南纬55度北纬60度,东经0360度),所有数据的经纬度范围相同。
CMIP_path = './data/CMIP_train.nc'
CMIP_trans_path = './data'
nc_CMIP = Dataset(CMIP_path,'r')
nc_CMIP.variables.keys()
dict_keys(['sst', 't300', 'ua', 'va', 'year', 'month', 'lat', 'lon'])
nc_CMIP['t300'][:].shape
(4645, 36, 24, 72)
year_month_index = [] years = np.array(nc_CMIP['year'][:]) months = np.array(nc_CMIP['month'][:]) lats = np.array(nc_CMIP['lat'][:]) lons = np.array(nc_CMIP['lon'][:]) last_thre_years = 1000 for year in years: ''' 数据的原因,我们 ''' if year >= 4645 - last_thre_years: for month in months: year_month_index.append('year_{}_month_{}'.format(year,month)) df_CMIP_sst = pd.DataFrame({'year_month':year_month_index}) df_CMIP_t300 = pd.DataFrame({'year_month':year_month_index}) df_CMIP_ua = pd.DataFrame({'year_month':year_month_index}) df_CMIP_va = pd.DataFrame({'year_month':year_month_index})
def trans_thre_df(df, vals, lats, lons, years, months, last_thre_years = 1000): ''' (4645, 36, 24, 72) -- year, month,lat,lon ''' for j,lat_ in (enumerate(lats)): # print(j) for i,lon_ in enumerate(lons): c = 'lat_lon_{}_{}'.format(int(lat_),int(lon_)) v = [] for y_,y in enumerate(years): ''' 数据的原因,我们 ''' if y >= 4645 - last_thre_years: for m_,m in enumerate(months): v.append(vals[y_,m_,j,i]) df[c] = v return df
%%time df_CMIP_sst = trans_thre_df(df = df_CMIP_sst, vals = np.array(nc_CMIP['sst'][:]), lats = lats, lons = lons, years = years, months = months) df_CMIP_sst.to_csv(CMIP_trans_path + 'df_CMIP_sst.csv',index = None) del df_CMIP_sst gc.collect() df_CMIP_t300 = trans_thre_df(df = df_CMIP_t300, vals = np.array(nc_CMIP['t300'][:]), lats = lats, lons = lons, years = years, months = months) df_CMIP_t300.to_csv(CMIP_trans_path + 'df_CMIP_t300.csv',index = None) del df_CMIP_t300 gc.collect() df_CMIP_ua = trans_thre_df(df = df_CMIP_ua, vals = np.array(nc_CMIP['ua'][:]), lats = lats, lons = lons, years = years, months = months) df_CMIP_ua.to_csv(CMIP_trans_path + 'df_CMIP_ua.csv',index = None) del df_CMIP_ua gc.collect() df_CMIP_va = trans_thre_df(df = df_CMIP_va, vals = np.array(nc_CMIP['va'][:]), lats = lats, lons = lons, years = years, months = months) df_CMIP_va.to_csv(CMIP_trans_path + 'df_CMIP_va.csv',index = None) del df_CMIP_va gc.collect()
(36036, 1729)
import pandas as pd import numpy as np import tensorflow as tf from tensorflow.keras.optimizers import Adam import joblib from netCDF4 import Dataset import netCDF4 as nc import gc from sklearn.metrics import mean_squared_error import numpy as np from tensorflow.keras.callbacks import LearningRateScheduler, Callback import tensorflow.keras.backend as K from tensorflow.keras.layers import * from tensorflow.keras.models import * from tensorflow.keras.optimizers import * from tensorflow.keras.callbacks import * from tensorflow.keras.layers import Input %matplotlib inline
标签数据为Nino3.4 SST异常指数,数据维度为(year,month)。
CMIP(SODA)_train.nc对应的标签数据当前时刻Nino3.4 SST异常指数的三个月滑动平均值,因此数据维度与维度介绍同训练数据一致
注:三个月滑动平均值为当前月与未来两个月的平均值。
df_SODA_label = pd.read_csv('./data/df_SODA_label.csv')
df_CMIP_label = pd.read_csv('./data/df_CMIP_label.csv')
df_SODA_label['year'] = df_SODA_label['year_month'].apply(lambda x: x[:x.find('m') - 1])
df_SODA_label['month'] = df_SODA_label['year_month'].apply(lambda x: x[x.find('m') :])
df_train = pd.pivot_table(data = df_SODA_label, values = 'label',index = 'year', columns = 'month')
year_new_index = ['year_{}'.format(i+1) for i in range(df_train.shape[0])]
month_new_columns = ['month_{}'.format(i+1) for i in range(df_train.shape[1])]
df_train = df_train[month_new_columns].loc[year_new_index]
def RMSE(y_true, y_pred): return tf.sqrt(tf.reduce_mean(tf.square(y_true - y_pred))) def RMSE_fn(y_true, y_pred): return np.sqrt(np.mean(np.power(np.array(y_true, float).reshape(-1, 1) - np.array(y_pred, float).reshape(-1, 1), 2))) def build_model(train_feat, test_feat): #allfeatures, inp = Input(shape=(len(train_feat))) x = Dense(1024, activation='relu')(inp) x = Dropout(0.25)(x) x = Dense(512, activation='relu')(x) x = Dropout(0.25)(x) output = Dense(len(test_feat), activation='linear')(x) model = Model(inputs=inp, outputs=output) adam = tf.optimizers.Adam(lr=1e-3,beta_1=0.99,beta_2 = 0.99) model.compile(optimizer=adam, loss=RMSE) return model
feature_cols = ['month_{}'.format(i+1) for i in range(12)]
label_cols = ['month_{}'.format(i+1) for i in range(12, df_train.shape[1])]
model_mlp = build_model(feature_cols, label_cols)
model_mlp.summary()
Model: "model" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= input_1 (InputLayer) [(None, 12)] 0 _________________________________________________________________ dense (Dense) (None, 1024) 13312 _________________________________________________________________ dropout (Dropout) (None, 1024) 0 _________________________________________________________________ dense_1 (Dense) (None, 512) 524800 _________________________________________________________________ dropout_1 (Dropout) (None, 512) 0 _________________________________________________________________ dense_2 (Dense) (None, 24) 12312 ================================================================= Total params: 550,424 Trainable params: 550,424 Non-trainable params: 0 _________________________________________________________________
tr_len = int(df_train.shape[0] * 0.8) tr_fea = df_train[feature_cols].iloc[:tr_len,:].copy() tr_label = df_train[label_cols].iloc[:tr_len,:].copy() val_fea = df_train[feature_cols].iloc[tr_len:,:].copy() val_label = df_train[label_cols].iloc[tr_len:,:].copy() model_weights = './user_data/model_data/model_mlp_baseline.h5' checkpoint = ModelCheckpoint(model_weights, monitor='val_loss', verbose=0, save_best_only=True, mode='min', save_weights_only=True) plateau = ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=5, verbose=1, min_delta=1e-4, mode='min') early_stopping = EarlyStopping(monitor="val_loss", patience=20) history = model_mlp.fit(tr_fea.values, tr_label.values, validation_data=(val_fea.values, val_label.values), batch_size=4096, epochs=200, callbacks=[plateau, checkpoint, early_stopping], verbose=2)
def rmse(y_true, y_preds): return np.sqrt(mean_squared_error(y_pred = y_preds, y_true = y_true)) def score(y_true, y_preds): accskill_score = 0 rmse_score = 0 a = [1.5] * 4 + [2] * 7 + [3] * 7 + [4] * 6 y_true_mean = np.mean(y_true,axis=0) y_pred_mean = np.mean(y_true,axis=0) for i in range(24): fenzi = np.sum((y_true[:,i] - y_true_mean[i]) *(y_preds[:,i] - y_pred_mean[i]) ) fenmu = np.sqrt(np.sum((y_true[:,i] - y_true_mean[i])**2) * np.sum((y_preds[:,i] - y_pred_mean[i])**2) ) cor_i= fenzi / fenmu accskill_score += a[i] * np.log(i+1) * cor_i rmse_score += rmse(y_true[:,i], y_preds[:,i]) return 2 / 3.0 * accskill_score - rmse_score
y_val_preds = model_mlp.predict(val_fea.values, batch_size=1024)
print('score', score(y_true = val_label.values, y_preds = y_val_preds))
在上面的部分,我们已经训练好了模型,接下来就是提交模型并在线上进行预测,这块可以分为三步:
import tensorflow as tf import tensorflow.keras.backend as K from tensorflow.keras.layers import * from tensorflow.keras.models import * from tensorflow.keras.optimizers import * from tensorflow.keras.callbacks import * from tensorflow.keras.layers import Input import numpy as np import os import zipfile def RMSE(y_true, y_pred): return tf.sqrt(tf.reduce_mean(tf.square(y_true - y_pred))) def build_model(train_feat, test_feat): #allfeatures, inp = Input(shape=(len(train_feat))) x = Dense(1024, activation='relu')(inp) x = Dropout(0.25)(x) x = Dense(512, activation='relu')(x) x = Dropout(0.25)(x) output = Dense(len(test_feat), activation='linear')(x) model = Model(inputs=inp, outputs=output) adam = tf.optimizers.Adam(lr=1e-3,beta_1=0.99,beta_2 = 0.99) model.compile(optimizer=adam, loss=RMSE) return model feature_cols = ['month_{}'.format(i+1) for i in range(12)] label_cols = ['month_{}'.format(i+1) for i in range(12, 36)] model = build_model(train_feat=feature_cols, test_feat=label_cols) model.load_weights('./user_data/model_data/model_mlp_baseline.h5')
test_path = './tcdata/enso_round1_test_20210201/' ### 0. 模拟线上的测试集合 # for i in range(10): # x = np.random.random(12) # np.save(test_path + "{}.npy".format(i+1),x) ### 1. 测试数据读取 files = os.listdir(test_path) test_feas_dict = {} for file in files: test_feas_dict[file] = np.load(test_path + file) ### 2. 结果预测 test_predicts_dict = {} for file_name,val in test_feas_dict.items(): test_predicts_dict[file_name] = model.predict(val.reshape([-1,12])) # test_predicts_dict[file_name] = model.predict(val.reshape([-1,12])[0,:]) ### 3.存储预测结果 for file_name,val in test_predicts_dict.items(): np.save('./result/' + file_name,val)
#打包目录为zip文件 def make_zip(source_dir='./result/', output_filename = 'result.zip'): zipf = zipfile.ZipFile(output_filename, 'w') pre_len = len(os.path.dirname(source_dir)) source_dirs = os.walk(source_dir) print(source_dirs) for parent, dirnames, filenames in source_dirs: print(parent, dirnames) for filename in filenames: if '.npy' not in filename: continue pathfile = os.path.join(parent, filename) arcname = pathfile[pre_len:].strip(os.path.sep) #相对路径 zipf.write(pathfile, arcname) zipf.close() make_zip()
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。