赞
踩
随着时间的积累,日志数据会越来越多,当你需要查看并分析庞杂的日志数据时,可通过 Filebeat+Kafka+Logstash+Elasticsearch
采集日志数据到 Elasticsearch(简称ES)中,并通过 Kibana 进行可视化展示与分析。
本文介绍具体的实现方法。
Kafka 是一种分布式、高吞吐、可扩展的消息队列服务,广泛用于日志收集、监控数据聚合、流式数据处理、在线和离线分析等大数据领域,已成为大数据生态中不可或缺的部分。在实际应用场景中,为了满足大数据实时检索的需求,一般可以使用 Filebeat 采集日志数据,将 Kafka 作为 Filebeat 的输出端。Kafka 实时接收到 Filebeat 采集的数据后,以 Logstash 作为输出端输出。输出到 Logstash 中的数据在格式或内容上可能不能满足你的需求,此时可以通过 Logstash 的 filter 插件过滤数据。最后将满足需求的数据输出到 ES 中进行分布式检索,并通过 Kibana 进行数据分析与展示。
简单处理流程如下:
CenterOS 7.6 版本,推荐 8G 以上内存。
执行命令如下:
# 在 docker 节点执行 # 腾讯云 docker hub 镜像 # export REGISTRY_MIRROR="https://mirror.ccs.tencentyun.com" # DaoCloud 镜像 # export REGISTRY_MIRROR="http://f1361db2.m.daocloud.io" # 阿里云 docker hub 镜像 export REGISTRY_MIRROR=https://registry.cn-hangzhou.aliyuncs.com # 安装 docker # 参考文档如下 # https://docs.docker.com/install/linux/docker-ce/centos/ # https://docs.docker.com/install/linux/linux-postinstall/ # 卸载旧版本 yum remove -y docker \ docker-client \ docker-client-latest \ docker-ce-cli \ docker-common \ docker-latest \ docker-latest-logrotate \ docker-logrotate \ docker-selinux \ docker-engine-selinux \ docker-engine # 设置 yum repository yum install -y yum-utils \ device-mapper-persistent-data \ lvm2 yum-config-manager --add-repo http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo # 安装并启动 docker yum install -y docker-ce-19.03.11 docker-ce-cli-19.03.11 containerd.io-1.2.13 mkdir /etc/docker || true cat > /etc/docker/daemon.json <<EOF { "registry-mirrors": ["${REGISTRY_MIRROR}"], "exec-opts": ["native.cgroupdriver=systemd"], "log-driver": "json-file", "log-opts": { "max-size": "100m" }, "storage-driver": "overlay2", "storage-opts": [ "overlay2.override_kernel_check=true" ] } EOF mkdir -p /etc/systemd/system/docker.service.d # Restart Docker systemctl daemon-reload systemctl enable docker systemctl restart docker # 关闭 防火墙 systemctl stop firewalld systemctl disable firewalld # 关闭 SeLinux setenforce 0 sed -i "s/SELINUX=enforcing/SELINUX=disabled/g" /etc/selinux/config # 关闭 swap swapoff -a yes | cp /etc/fstab /etc/fstab_bak cat /etc/fstab_bak |grep -v swap > /etc/fstab
验证下 docker info:
[root@vm-1]# docker info Client: Debug Mode: false Server: Containers: 16 Running: 11 Paused: 0 Stopped: 5 Images: 22 Server Version: 19.03.11 Storage Driver: overlay2 Backing Filesystem: xfs Supports d_type: true Native Overlay Diff: true Logging Driver: json-file Cgroup Driver: systemd Plugins: Volume: local Network: bridge host ipvlan macvlan null overlay Log: awslogs fluentd gcplogs gelf journald json-file local logentries splunk syslog Swarm: inactive Runtimes: runc Default Runtime: runc Init Binary: docker-init containerd version: 7ad184331fa3e55e52b890ea95e65ba581ae3429 runc version: dc9208a3303feef5b3839f4323d9beb36df0a9dd init version: fec3683 Security Options: seccomp Profile: default Kernel Version: 3.10.0-1127.el7.x86_64 Operating System: CentOS Linux 7 (Core) OSType: linux Architecture: x86_64 CPUs: 4 Total Memory: 11.58GiB Name: vm-autotest-server ID: KQ5B:KAG5:LLB5:CUD4:NQZX:4GHL:5XLY:FM7X:KRJ5:X3WK:42GV:QLON Docker Root Dir: /var/lib/docker Debug Mode: false Registry: https://index.docker.io/v1/ Labels: Experimental: false Insecure Registries: 172.16.62.179:5000 127.0.0.0/8 Registry Mirrors: https://registry.cn-hangzhou.aliyuncs.com/ Live Restore Enabled: false
Docker Compose是一个用于定义和运行多个 docker 容器应用的工具。使用 Compose 你可以用 YAML 文件来配置你的应用服务,然后使用一个命令,你就可以部署你配置的所有服务了。
# 下载 Docker Compose
sudo curl -L "https://github.com/docker/compose/releases/download/1.29.2/docker-compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose
# 修改该文件的权限为可执行
chmod +x /usr/local/bin/docker-compose
# 验证信息
docker-compose --version
组件 | 版本 | 部署方式 |
---|---|---|
elasticsearch | 7.6.2 | Docker Compose |
logstash | 7.6.2 | Docker Compose |
kibana | 7.6.2 | Docker Compose |
zookeeper | latest | Docker Compose |
kafka | latest | Docker Compose |
filebeat | 7.4.2 | 二进制 |
执行命令如下:
# 需要设置系统内核参数,否则 ES 会因为内存不足无法启动
# 改变设置
sysctl -w vm.max_map_count=262144
# 使之立即生效
sysctl -p
# 创建 logstash 目录,并将 Logstash 的配置文件 logstash.conf 拷贝到该目录
mkdir -p /mydata/logstash
# 需要创建 elasticsearch/data 目录并设置权限,否则 ES 会因为无权限访问而启动失败
mkdir -p /mydata/elasticsearch/data/
chmod 777 /mydata/elasticsearch/data/
docker-compose.yml
文件内容为:
version: '3' services: elasticsearch: image: elasticsearch:7.6.2 container_name: elasticsearch user: root environment: - "cluster.name=elasticsearch" #设置集群名称为elasticsearch - "discovery.type=single-node" #以单一节点模式启动 volumes: - /mydata/elasticsearch/plugins:/usr/share/elasticsearch/plugins #插件文件挂载 - /mydata/elasticsearch/data:/usr/share/elasticsearch/data #数据文件挂载 - /etc/localtime:/etc/localtime:ro - /usr/share/zoneinfo:/usr/share/zoneinfo ports: - 9200:9200 - 9300:9300 networks: - elastic logstash: image: logstash:7.6.2 container_name: logstash environment: - TZ=Asia/Shanghai volumes: - /mydata/logstash/logstash.conf:/usr/share/logstash/pipeline/logstash.conf #挂载logstash的配置文件 depends_on: - elasticsearch #kibana在elasticsearch启动之后再启动 links: - elasticsearch:es #可以用es这个域名访问elasticsearch服务 ports: - 5044:5044 networks: - elastic kibana: image: kibana:7.6.2 container_name: kibana links: - elasticsearch:es #可以用es这个域名访问elasticsearch服务 depends_on: - elasticsearch #kibana在elasticsearch启动之后再启动 environment: - "elasticsearch.hosts=http://es:9200" #设置访问elasticsearch的地址 - /etc/localtime:/etc/localtime:ro - /usr/share/zoneinfo:/usr/share/zoneinfo ports: - 5601:5601 networks: - elastic zookeeper: image: wurstmeister/zookeeper container_name: zookeeper volumes: - /mydata/zookeeper/data:/data - /mydata/zookeeper/log:/datalog - /etc/localtime:/etc/localtime:ro - /usr/share/zoneinfo:/usr/share/zoneinfo networks: - elastic ports: - "2181:2181" kafka: container_name: kafka image: wurstmeister/kafka depends_on: - zookeeper volumes: - /var/run/docker.sock:/var/run/docker.sock - /mydata/kafka:/kafka - /etc/localtime:/etc/localtime:ro links: - zookeeper ports: - "9092:9092" networks: - elastic environment: - KAFKA_LISTENERS=INTERNAL://kafka:9092, OUT://kafka:29092 - KAFKA_ADVERTISED_LISTENERS=INTERNAL://kafka:9092, OUT://kafka:29092 - KAFKA_LISTENER_SECURITY_PROTOCOL_MAP=INTERNAL:PLAINTEXT,OUT:PLAINTEXT - KAFKA_INTER_BROKER_LISTENER_NAME=OUT - KAFKA_ZOOKEEPER_CONNECT=zookeeper:2181 - KAFKA_MESSAGE_MAX_BYTES=2000000 - KAFKA_CREATE_TOPICS=logs:1:1 networks: elastic:
将该文件上传的 linux 服务器上,执行 docker-compose up
命令即可启动所有服务。
[root@vm-1]# docker-compose -f docker-compose.yml up -d
[root@vm-1]# docker-compose ps
Name Command State Ports
-----------------------------------------------------------------------------------------------------------
elasticsearch /usr/local/bin/docker-entr ... Up 0.0.0.0:9200->9200/tcp, 0.0.0.0:9300->9300/tcp
kafka start-kafka.sh Up 0.0.0.0:9092->9092/tcp
kibana /usr/local/bin/dumb-init - ... Up 0.0.0.0:5601->5601/tcp
logstash /usr/local/bin/docker-entr ... Up 0.0.0.0:5044->5044/tcp, 9600/tcp
zookeeper /bin/sh -c /usr/sbin/sshd ... Up 0.0.0.0:2181->2181/tcp, 22/tcp, 2888/tcp, 3888/tcp
[root@vm-autotest-server elk]#
filebeat 客户端安装方式:
curl -L -O https://artifacts.elastic.co/downloads/beats/filebeat/filebeat-7.4.2-linux-x86_64.tar.gz
tar xzvf filebeat-7.4.2-linux-x86_64.tar.gz
cd filebeat-7.4.2-linux-x86_64
当所有依赖服务启动完成后,需要对以下服务进行一些设置。
# elasticsearch 需要安装中文分词器 IKAnalyzer,并重新启动。
docker exec -it elasticsearch /bin/bash
#此命令需要在容器中运行
elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.6.2/elasticsearch-analysis-ik-7.6.2.zip
docker restart elasticsearch
# logstas h需要安装 json_lines 插件,并重新启动。
docker exec -it logstash /bin/bash
logstash-plugin install logstash-codec-json_lines
docker restart logstash
修改 filebeat.yml
文件内容
ilebeat.inputs: - type: log enabled: true paths: - /var/log/nginx/*.log filebeat.config.modules: path: ${path.config}/modules.d/*.yml reload.enabled: false setup.template.settings: index.number_of_shards: 1 setup.dashboards.enabled: false setup.kibana: host: "http://kafka:5601" output.kafka: hosts: ["kafka:9092"] topic: 'logs' codec.json: pretty: false
参数说明:
参数 | 说明 |
---|---|
type | 输入类型。设置为log,表示输入源为日志。 |
enabled | 设置配置是否生效。true表示生效,false表示不生效。 |
paths | 需要监控的日志文件的路径。多个日志可在当前路径下另起一行写入日志文件路径。 |
hosts | 消息队列Kafka实例的接入点。 |
topic | 日志输出到消息队列Kafka的Topic,请指定为已创建的Topic。 |
注意:
客户端 hosts 添加 kafka 对应 server 的 ip 地址 以及 filebeat 配置建议使用 ansible。
[root@vm-1# cat /etc/hosts
172.16.62.179 kafka
# 客户端启动服务
[root@vm-1#./filebeat &
更多配置请参见:
修改 logstash.conf 内容:
input { # # 来源beats # beats { # 端口 # port => "5044" # } kafka { bootstrap_servers => "kafka:29092" topics => ["logs"] group_id => "logstash" codec => json } } # 分析、过滤插件,可以多个 # filter { # grok { # match => { "message" => "%{COMBINEDAPACHELOG}"} # } # geoip { # source => "clientip" # } # } output { # 选择elasticsearch elasticsearch { hosts => ["http://es:9200"] #index => "%{[@metadata][beat]}-%{[@metadata][version]}-%{+YYYY.MM.dd}" index => "logs-%{+YYYY.MM.dd}" } }
input 参数说明:
参数 | 说明 |
---|---|
bootstrap_servers | 消息队列 Kafka 实例的接入点 |
group_id | 指定已创建的 Consumer Group 的名称。 |
topics | 指定为已创建的 Topic 的名称,需要与 Filebeat 中配置的 Topic 名称保持一致。 |
codec | 设置为 json,表示解析 JSON 格式的字段,便于在 Kibana 中分析。 |
output 参数说明:
参数 | 说明 |
---|---|
hosts | ES的访问地址,取值为http://<es内网地址>:9200。 |
user | 访问 ES 的用户名,默认为 elastic。 |
password | 访问 ES 的密码。 |
index | 索引名称。设置为 **logs‐%{+YYYY.MM.dd} **表示索引名称以 logs 为前缀,以日期为后缀,例如 logs-2021.09.28。 |
注意:
logstash 中最为关键的地方在于 filter,为了调试 filter 的配置。
更多配置请参见:
操作命令如下:
# 进入容器 docker exec -it kafka bash # kafka 默认安装在 /opt/kafka cd opt/kafka # 要想查询消费数据,必须要指定组 bash-5.1# bin/kafka-consumer-groups.sh --bootstrap-server 172.16.62.179:9092 --list logstash # 查看 topic bash-5.1# bin/kafka-topics.sh --list --zookeeper 172.16.62.179:2181 __consumer_offsets logs # 查看消费情况 bash-5.1# bin/kafka-consumer-groupsdescribe --bootstrap-server 172.16.62.179:9092 --group logstash GROUP TOPIC PARTITION CURRENT-OFFSET LOG-END-OFFSET LAG CONSUMER-ID HOST CLIENT-ID logstash logs 0 107335 107335 0 logstash-0-c6d82a1c-0f14-4372-b49f-8cd476f54d90 /172.19.0.2 logstash-0 #参数解释: #--describe 显示详细信息 #--bootstrap-server 指定kafka连接地址 #--group 指定组。
字段解释:
TOPIC | PARTITION | CURRENT-OFFSET | LOG-END-OFFSET | LAG | CONSUMER-ID | HOST | CLIENT-ID |
---|---|---|---|---|---|---|---|
topic名字 | 分区id | 当前已消费的条数 | 总条数 | 未消费的条数 | 消费id | 主机ip | 客户端id |
从上面的信息可以看出,topic 为 logs 总共消费了 107335 条信息, 未消费的条数为 0。也就是说,消费数据没有积压的情况.
通过 elasticsearch-head
插件查看 ES 中是否收到了由 logstash 发送过来的日志
打开 es,进入首页后,点击“connect to your Elasticsearch index”
填入 es 中的索引名,支持正则匹配,输入 Index pattern(本文使用 logs-*),单击 Next step。
选择“@timestamp”作为时间过滤字段,然后点击“create index pattern”:
创建完成后:
在左侧导航栏,单击 Discover。
从页面左侧的下拉列表中,选择已创建的索引模式(logs-*)。
在页面右上角,选择一段时间,查看对应时间段内的 Filebeat 采集的日志数据。
在企业实际项目中,elk 是比较成熟且广泛使用的技术方案。logstash 性能稍弱于 filebeat,一般不直接运行于采集点,推荐使用filebeat。在日志进入elk前,从经验性角度,前置 kafka,一方面作为队列和缓冲,另一方面提供了统一的入口渠道。
源码地址:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。