赞
踩
系列文章链接
论文一:2020 Informer:长时序数据预测
论文二:2021 Autoformer:长序列数据预测
论文三:2022 FEDformer:长序列数据预测
论文四:2022 Non-Stationary Transformers:非平稳性时序预测
论文五:2022 Pyraformer:基于金字塔图结构的时序预测
论文六:2023 Crossformer:多变量时序预测
论文七:2023 LTSF-Linear:质疑transformer能力的线性预测模型
论文链接:https://arxiv.org/abs/2205.14415
github链接:https://github.com/thuml/Nonstationary_Transformers
参考解读:https://zhuanlan.zhihu.com/p/587665491
本文还是清华大学THUML实验室的论文,背景是在历史的研究中,大多数时序预测方法都是针对平稳型数据,但是在实际生产过程中,大部分数据其实没有那么强的平稳性,因此本文想针对这种非平稳型的数据进行模型优化;基于此,本文的主要贡献表现在一下几点:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。