赞
踩
topk(num,dim=1)
>>> output=torch.randn(3,4) >>> output tensor([[-1.9291, 1.4127, -2.2464, 0.8932], [-0.4483, -0.3458, 0.8384, 1.9580], [-0.5633, -2.2806, 0.6278, 1.3552]]) 在行上取一个最大值 >>> topkv,topki=output.topk(1,1) >>> topkv tensor([[1.4127], [1.9580], [1.3552]]) >>> topki tensor([[1], [3], [3]]) 在行上取前两个最大值 >>> topkv,topki=output.topk(2,1) >>> topkv tensor([[1.4127, 0.8932], [1.9580, 0.8384], [1.3552, 0.6278]]) >>> topki tensor([[1, 3], [3, 2], [3, 2]])
topk(num,dim=0)
>>> output=torch.randn(3,4) >>> output tensor([[-1.9291, 1.4127, -2.2464, 0.8932], [-0.4483, -0.3458, 0.8384, 1.9580], [-0.5633, -2.2806, 0.6278, 1.3552]]) 在列上取一个最大值 >>> topkv,topki=output.topk(1,0) >>> topkv tensor([[-0.4483, 1.4127, 0.8384, 1.9580]]) >>> topki tensor([[1, 0, 1, 1]]) 在列上取两个最大值 >>> topkv,topki=output.topk(2,0) >>> topkv tensor([[-0.4483, 1.4127, 0.8384, 1.9580], [-0.5633, -0.3458, 0.6278, 1.3552]]) >>> topki tensor([[1, 0, 1, 1], [2, 1, 2, 2]])
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。