赞
踩
1. I-BERT: Integer-only BERT Quantization
基于多项式来实现Integer-only的non-learner算子,如LN、softmax、GeLU,文章虽然针对的是Bert,但是对其他transformer模型同样有效。
2. FQ-ViT: Post-Training Quantization for Fully Quantized Vision Transformer
基于Power-of-Two Factor实现LN,基于log2 quantization实现softmax,硬件友好
3. SCALED QUANTIZATION FOR THE VISION TRANSFORMER
1. LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale
huggingface中使用的transformer量化方案,文章分析了随着model size以及PPL的变化,features会产生什么样的变化,并且提出了LLM.int8()量化(一种混合量化),很具有实用性和启发性。
2. ZeroQuant: Efficient and Affordable Post-Training Quantization for Large-Scale Transformers
针对Outlier Features提出了Group-wise Quantization for Weights和Token-wise Quantization for Activations以及Layer-by-layer Knowledge Distillation with Affordable Cost
3. PTQ4ViT: Post-Training Quantization for Vision Transformers with Twin Uniform Quantization
分析post-GELU 和 post-Softmax的特征分布,提出了twin uniform quantization,并且提出了Hessian Guided Metric来更好的选择量化参数
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。