当前位置:   article > 正文

Transformer 量化论文推荐_i-vit: integer-only quantization for efficient vis

i-vit: integer-only quantization for efficient vision transformer inference

Full-integer Inference

1. I-BERT: Integer-only BERT Quantization

基于多项式来实现Integer-only的non-learner算子,如LN、softmax、GeLU,文章虽然针对的是Bert,但是对其他transformer模型同样有效。

2. FQ-ViT: Post-Training Quantization for Fully Quantized Vision Transformer

基于Power-of-Two Factor实现LN,基于log2 quantization实现softmax,硬件友好

3. SCALED QUANTIZATION FOR THE VISION TRANSFORMER

Outlier Features Quantization

1. LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale

huggingface中使用的transformer量化方案,文章分析了随着model size以及PPL的变化,features会产生什么样的变化,并且提出了LLM.int8()量化(一种混合量化),很具有实用性和启发性。

2. ZeroQuant: Efficient and Affordable Post-Training Quantization for Large-Scale Transformers

针对Outlier Features提出了Group-wise Quantization for Weights和Token-wise Quantization for Activations以及Layer-by-layer Knowledge Distillation with Affordable Cost

3. PTQ4ViT: Post-Training Quantization for Vision Transformers with Twin Uniform Quantization

分析post-GELU 和 post-Softmax的特征分布,提出了twin uniform quantization,并且提出了Hessian Guided Metric来更好的选择量化参数

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/不正经/article/detail/494071
推荐阅读
相关标签
  

闽ICP备14008679号