赞
踩
转行进入大数据,首先需要了解的就是大数据是做什么,工作内容,然后就是找个完整的学习路线跟着去学习了,大数据的学习内容也是不少的~
简单来说,分为6步,大数据开发入门,大数据核心基础,千亿级数仓技术,PB级内存计算,亚秒级实时计算,大厂面试。
大数据工程师的技术要求如下:
1、掌握至少一种数据库开发技术:Oracle、Teradata、DB2、Mysql等,灵活运用SQL实现海量数据ETL加工处理;
2、熟悉Linux系统常规shell处理命令,灵活运用shell做的文本处理和系统操作;
3、有从事分布式数据存储与计算平台应用开发经验,熟悉Hadoop生态相关技术并有相关实践经验着优先,重点考察Hdfs、Mapreduce、Hive、Hbase;
4、熟练掌握一门或多门编程语言,并有大型项目建设经验者优先,重点考察Java、Python、Perl;
5、熟悉数据仓库领域知识和技能者优先,包括但不局限于:元数据管理、数据开发测试工具与方法、数据质量、主数据管理;
6、掌握实时流计算技术,有storm开发经验者优先。
数据工程师的目标着眼于全局和开发。数据工程师建立自动化系统和模型数据结构以使数据得到有效处理。数据工程师的目标是创建及开发表和数据管道,以支持分析仪表板和其他数据客户(如数据科学家、分析师和其他工程师)。与大多数工程师很相似,有很多设计、假设、限制和开发,能够创建某种最终的强健系统。这个系统可能是一个数据仓库和ETL或者流式管道。
大数据学习潮流已成必然,“超高薪、高大上、前景光明”成为大数据行业的代名词。随着数据开发工程师成为炙手可热的职位,与之相关各项条件水涨船高:录取标准、人才需求、以及,薪资待遇,因此想要学习大数据掌握相关技能才是自身最大的核心竞争力。
Python+大数据学习路线图详细介绍
学前导读:从传统关系型数据库入手,掌握数据迁移工具、BI数据可视化工具、SQL,对后续学习打下坚实基础。
MySQL是整个IT基础课程,SQL贯穿整个IT人生,俗话说,SQL写的好,工作随便找。
学前导读:学习Linux、Hadoop、Hive,掌握大数据基础技术。
学前导读:本阶段课程以真实项目为驱动,学习离线数仓技术。
Spark官方已经在自己首页中将Python作为第一语言,在3.2版本的更新中,高亮提示内置捆绑Pandas;
读者福利:知道你对Python感兴趣,便准备了这套python学习资料
对于0基础小白入门:
如果你是零基础小白,想快速入门Python是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面还可以找到适合自己的学习方案
包括:Python安装包+激活码、Python web开发,Python爬虫,数据分析,人工智能、机器学习等学习教程。带你从零基础系统性的学好Python!
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。