当前位置:   article > 正文

【深度优先搜索】【树】【图论】2973. 树中每个节点放置的金币数目_树中每个节点放置的金币个数

树中每个节点放置的金币个数

作者推荐

视频算法专题

本博文涉及知识点

深度优先搜索 树 图论 分类讨论

LeetCode2973. 树中每个节点放置的金币数目

给你一棵 n 个节点的 无向 树,节点编号为 0 到 n - 1 ,树的根节点在节点 0 处。同时给你一个长度为 n - 1 的二维整数数组 edges ,其中 edges[i] = [ai, bi] 表示树中节点 ai 和 bi 之间有一条边。
给你一个长度为 n 下标从 0 开始的整数数组 cost ,其中 cost[i] 是第 i 个节点的 开销 。
你需要在树中每个节点都放置金币,在节点 i 处的金币数目计算方法如下:
如果节点 i 对应的子树中的节点数目小于 3 ,那么放 1 个金币。
否则,计算节点 i 对应的子树内 3 个不同节点的开销乘积的 最大值 ,并在节点 i 处放置对应数目的金币。如果最大乘积是 负数 ,那么放置 0 个金币。
请你返回一个长度为 n 的数组 coin ,coin[i]是节点 i 处的金币数目。
示例 1:
在这里插入图片描述

输入:edges = [[0,1],[0,2],[0,3],[0,4],[0,5]], cost = [1,2,3,4,5,6]
输出:[120,1,1,1,1,1]
解释:在节点 0 处放置 6 * 5 * 4 = 120 个金币。所有其他节点都是叶子节点,子树中只有 1 个节点,所以其他每个节点都放 1 个金币。
示例 2:
在这里插入图片描述

输入:edges = [[0,1],[0,2],[1,3],[1,4],[1,5],[2,6],[2,7],[2,8]], cost = [1,4,2,3,5,7,8,-4,2]
输出:[280,140,32,1,1,1,1,1,1]
解释:每个节点放置的金币数分别为:

  • 节点 0 处放置 8 * 7 * 5 = 280 个金币。
  • 节点 1 处放置 7 * 5 * 4 = 140 个金币。
  • 节点 2 处放置 8 * 2 * 2 = 32 个金币。
  • 其他节点都是叶子节点,子树内节点数目为 1 ,所以其他每个节点都放 1 个金币。
    示例 3:
    在这里插入图片描述

输入:edges = [[0,1],[0,2]], cost = [1,2,-2]
输出:[0,1,1]
解释:节点 1 和 2 都是叶子节点,子树内节点数目为 1 ,各放置 1 个金币。节点 0 处唯一的开销乘积是 2 * 1 * -2 = -4 。所以在节点 0 处放置 0 个金币。

提示:
2 <= n <= 2 * 104
edges.length == n - 1
edges[i].length == 2
0 <= ai, bi < n
cost.length == n
1 <= |cost[i]| <= 104
edges 一定是一棵合法的树。

分类讨论

情况表面上很多,时间上只有4情况:
{ 1 不足 3 个节点 最大的三个正数的乘积 至少 3 个正数节点 1 个正数和 2 个负数的乘积 至少一个正数节点, 2 个负数节点 0 o t h e r

{1331220other
1最大的三个正数的乘积1个正数和2个负数的乘积0不足3个节点至少3个正数节点至少一个正数节点,2个负数节点other
正数节点都只需要记录3个节点,2个不够。

3个负数节点,0个正数节点。值是0。
2个负数节点,0个正数节点。值是1。
注意:cost[i]不会为0。

代码

核心代码

class CNeiBo2
{
public:
	CNeiBo2(int n, bool bDirect, int iBase = 0) :m_iN(n), m_bDirect(bDirect), m_iBase(iBase)
	{
		m_vNeiB.resize(n);
	}
	CNeiBo2(int n, vector<vector<int>>& edges, bool bDirect, int iBase = 0) :m_iN(n), m_bDirect(bDirect), m_iBase(iBase)
	{
		m_vNeiB.resize(n);
		for (const auto& v : edges)
		{
			m_vNeiB[v[0] - iBase].emplace_back(v[1] - iBase);
			if (!bDirect)
			{
				m_vNeiB[v[1] - iBase].emplace_back(v[0] - iBase);
			}
		}
	}
	inline void Add(int iNode1, int iNode2)
	{
		iNode1 -= m_iBase;
		iNode2 -= m_iBase;
		m_vNeiB[iNode1].emplace_back(iNode2);
		if (!m_bDirect)
		{
			m_vNeiB[iNode2].emplace_back(iNode1);
		}
	}
	const int m_iN;
	const bool m_bDirect;
	const int m_iBase;
	vector<vector<int>> m_vNeiB;
};

class Solution {
public:
	vector<long long> placedCoins(vector<vector<int>>& edges, vector<int>& cost) {
		m_vAns.resize(cost.size());
		m_cost = cost;
		CNeiBo2 neiBo(cost.size(), edges, false);
		std::priority_queue<int> maxHeap;
		std::priority_queue<int, vector<int>, greater<int> > minHeap;
		DFS(maxHeap, minHeap, neiBo.m_vNeiB, 0, -1);
		return m_vAns;
	}
	void DFS(std::priority_queue<int>& maxHeap, std::priority_queue<int, vector<int>, greater<int> >& minHeap,const vector<vector<int>>& neiBo, int cur, int par)
	{
		if (m_cost[cur] >= 0)
		{
			minHeap.emplace(m_cost[cur]);
		}
		else
		{
			maxHeap.emplace(m_cost[cur]);
		}
		for (const auto& next : neiBo[cur])
		{
			if (next == par)
			{
				continue;
			}
			std::priority_queue<int> maxHeap1;
			std::priority_queue<int, vector<int>, greater<int> > minHeap1;
			DFS(maxHeap1,minHeap1,neiBo, next, cur);
			Union(maxHeap, maxHeap1);
			Union(minHeap, minHeap1);
		}
		auto Cal = [&]()
		{
			if (maxHeap.size() + minHeap.size() <3 )
			{
				return 1LL;
			} 
			long long llRet = 0;
			auto v1 = ToVector(minHeap);
			auto v2 = ToVector(maxHeap);			
			if (3 == minHeap.size())
			{		
				llRet =max(llRet, (long long)v1[0] * v1[1] * v1[2]);
			}
			if (minHeap.size()&& (maxHeap.size() >= 2))
			{				
				if (v2.size() > 2)
				{
					v2.erase(v2.begin());
				}				
				llRet = max(llRet, (long long)v1.back() * v2[0] * v2[1]);
			}
			return llRet;
		};
		m_vAns[cur] = Cal();
	}

protected:
	template<class T>
	vector<int> ToVector(T heap)
	{
		vector<int> v;
		while (heap.size())
		{
			v.emplace_back(heap.top());
			heap.pop();
		}
		T heap2(v.begin(), v.end());
		heap2.swap(heap);
		return v;
	}
	template<class T>
	void Union(T& heap1, T& heap2)
	{
		while (heap2.size())
		{
			heap1.emplace(heap2.top());
			heap2.pop();
		}
		while (heap1.size() > 3)
		{
			heap1.pop();
		}
	}
	vector<long long> m_vAns;
	vector<int> m_cost;
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124

测试用例

template<class T,class T2>
void Assert(const T& t1, const T2& t2)
{
	assert(t1 == t2);
}

template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{
	if (v1.size() != v2.size())
	{
		assert(false);
		return;
	}
	for (int i = 0; i < v1.size(); i++)
	{
		Assert(v1[i], v2[i]);
	}

}

int main()
{
	vector<vector<int>> edges;
	vector<int> cost;
	{
		Solution sln;
		edges = { {0,1},{0,2},{2,3} }, cost = { 10000, -10000, 10000, -10000 };
		auto res = sln.placedCoins(edges, cost);
		Assert({ 1000000000000,1,1,1 }, res);
	}
	{
		Solution sln;
		edges = { {0,1},{0,2},{0,3},{0,4},{0,5} }, cost = { 1,2,3,4,5,6 };
		auto res = sln.placedCoins(edges, cost);
		Assert({ 120,1,1,1,1,1 }, res);
	}
	{
		Solution sln;
		edges = { {0,1},{0,2},{1,3},{1,4},{1,5},{2,6},{2,7},{2,8} }, cost = { 1,4,2,3,5,7,8,-4,2 };
		auto res = sln.placedCoins(edges, cost);
		Assert({ 280,140,32,1,1,1,1,1,1 }, res);
	}
	{
		Solution sln;
		edges = { {0,1},{0,2} }, cost = { 1,2,-2 };
		auto res = sln.placedCoins(edges, cost);
		Assert({ 0,1,1 }, res);
	}
	{
		Solution sln;
		edges = { {0,1},{0,2},{0,3},{0,4},{0,5},{0,6},{0,7},{0,8},{0,9},{0,10},{0,11},{0,12},{0,13},{0,14},{0,15},{0,16},{0,17},{0,18},{0,19},{0,20},{0,21},{0,22},{0,23},{0,24},{0,25},{0,26},{0,27},{0,28},{0,29},{0,30},{0,31},{0,32},{0,33},{0,34},{0,35},{0,36},{0,37},{0,38},{0,39},{0,40},{0,41},{0,42},{0,43},{0,44},{0,45},{0,46},{0,47},{0,48},{0,49},{0,50},{0,51},{0,52},{0,53},{0,54},{0,55},{0,56},{0,57},{0,58},{0,59},{0,60},{0,61},{0,62},{0,63},{0,64},{0,65},{0,66},{0,67},{0,68},{0,69},{0,70},{0,71},{0,72},{0,73},{0,74},{0,75},{0,76},{0,77},{0,78},{0,79},{0,80},{0,81},{0,82},{0,83},{0,84},{0,85},{0,86},{0,87},{0,88},{0,89},{0,90},{0,91},{0,92},{0,93},{0,94},{0,95},{0,96},{0,97},{0,98},{0,99} };
		cost={-5959, 602, -6457, 7055, -1462, 6347, 7226, -8422, -6088, 2997, -7909, 6433, 5217, 3294, -3792, 7463, 8538, -3811, 5009, 151, 5659, 4458, -1702, -1877, 2799, 9861, -9668, -1765, 2181, -8128, 7046, 9529, 6202, -8026, 6464, 1345, 121, 1922, 7274, -1227, -9914, 3025, 1046, -9368, -7368, 6205, -6342, 8091, -6732, -7620, 3276, 5136, 6871, 4823, -1885, -4005, -3974, -2725, -3845, -8508, 7201, -9566, -7236, -3386, 4021, 6793, -8759, 5066, 5879, -5171, 1011, 1242, 8536, -8405, -9646, -214, 2251, -9934, -8820, 6206, 1006, 1318, -9712, 7230, 5608, -4601, 9185, 346, 3056, 8913, -2454, -3445, -4295, 4802, -8852, -6121, -4538, -5580, -9246, -6462};
		auto res = sln.placedCoins(edges, cost);
		sort(cost.begin(), cost.end());
		Assert({ 971167251036, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, res);
	}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58

第二版

class CNeiBo2
{
public:
CNeiBo2(int n, bool bDirect, int iBase = 0) :m_iN(n), m_bDirect(bDirect), m_iBase(iBase)
{
m_vNeiB.resize(n);
}
CNeiBo2(int n, vector<vector>& edges, bool bDirect, int iBase = 0) :m_iN(n), m_bDirect(bDirect), m_iBase(iBase)
{
m_vNeiB.resize(n);
for (const auto& v : edges)
{
m_vNeiB[v[0] - iBase].emplace_back(v[1] - iBase);
if (!bDirect)
{
m_vNeiB[v[1] - iBase].emplace_back(v[0] - iBase);
}
}
}
inline void Add(int iNode1, int iNode2)
{
iNode1 -= m_iBase;
iNode2 -= m_iBase;
m_vNeiB[iNode1].emplace_back(iNode2);
if (!m_bDirect)
{
m_vNeiB[iNode2].emplace_back(iNode1);
}
}
const int m_iN;
const bool m_bDirect;
const int m_iBase;
vector<vector> m_vNeiB;
};

class Solution {
public:
vector placedCoins(vector<vector>& edges, vector& cost) {
m_cost = cost;
m_vAns.resize(cost.size());
CNeiBo2 neiBo(cost.size(), edges, false);
multiset<int, greater> more0;
multiset less0;
DFS(more0, less0, neiBo.m_vNeiB, 0, -1);
return m_vAns;
}
void DFS(multiset<int, greater>& more0, multiset& less0, vector<vector>& neiBo, int cur, int par)
{
if (m_cost[cur] > 0)
{
more0.emplace(m_cost[cur]);
}
else
{
less0.emplace(m_cost[cur]);
}
for (const auto& next : neiBo[cur])
{
if (next == par)
{
continue;
}
multiset<int, greater> more01;
multiset less01;
DFS(more01, less01, neiBo, next, cur);
Union(more0, more01);
Union(less0, less01);
}
long long& llRet = m_vAns[cur];
if (more0.size() + less0.size() < 3)
{
llRet = 1;
return;
}
if (more0.size() >= 3)
{
auto it = more0.begin();
llRet = max(llRet, (long long)*(it++) * *(it++) * (it++));
}
if (more0.size() && (less0.size() >= 2))
{
llRet = max(llRet, (long long)
(more0.begin()) * *(less0.begin()) * *(std::next(less0.begin())));
}
};
template
void Union(T& set1, const T& set2)
{
for (const auto& n : set2)
{
set1.emplace(n);
}
while (set1.size() > 3)
{
set1.erase(prev(set1.end()));
}
}
vector m_cost;
vector m_vAns;
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关

下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:【wpsshop博客】
推荐阅读
相关标签
  

闽ICP备14008679号