赞
踩
生成式 AI 项目生命周期的整个过程类似于从范围、选择、调整和对齐/协调模型以及应用程序集成开始的顺序依赖过程。流程表明每个步骤都建立在前一步的基础上。有必要了解每个阶段对于项目的成功都至关重要。
下面的流程图重点介绍了生成式 AI 项目生命周期的第一阶段 1 — “范围、选择和预训练”需要启动 GenAI 项目。
与任何应用一样,生成式人工智能项目始于一个需要解决的问题。理解问题、通过生成式人工智能找到解决方案以及可衡量的指标构成了成功项目的支柱。法学硕士能够执行许多任务,但它们的能力在很大程度上取决于模型的大小和架构。确定项目旨在通过生成式人工智能实现什么目标。
您是否需要模型能够执行许多不同的任务?包括生成大量文本,或具有高度的能力,或者任务更具体,如命名实体识别,这样您的模型只需要根据要求擅长一项任务。明确对模型的期望可以节省更多时间,也许更重要的是,计算成本。
范围要求决定了模型的选择。决定是使用自己的模型并从头开始训练它们,还是使用现有的基础模型(称为基础模型 (FM))。AI 社区提供了适合各种任务的各种预训练模型。评估这些模型至关重要,要考虑其性能、可扩展性和与项目的兼容性等因素。GPT、BERT、FLAN T5 是可供使用的强大模型的示例。
特定任务的最佳 LLM 架构取决于该任务的具体要求。例如,
大型语言模型 (LLM) 中的预训练是指训练的初始阶段,在此阶段,模型将接触大量未标记的文本数据语料库,以学习语言中固有的模式和结构。预训练通过自监督学习使用大量非结构化文本数据来训练 LLM。
此阶段对于模型形成对语言内的语法、语义和上下文关系的总体理解至关重要。
ParagogerAI训练营 2img.ai
图片来自 DeepLearning.AI
LLM 的架构会影响训练效率和推理效率,即在接受训练后,模型能够多快多高效地得出答案。更复杂的模型可能会表现更好,但它们在生产环境中运行速度可能会更慢,成本也会更高。有几类大型语言模型适用于不同类型的用例:
选择合适的预训练目标是持续研究的一个活跃领域,研究人员不断探索新的目标和组合,以充分发挥 LLM 的潜力。
开发和维护大型语言模型所需的大量资本投入、庞大的数据集、技术专长以及大规模计算基础设施一直是大多数企业进入的障碍。
为了训练大型语言模型(LLM),模型的设计非常重要,因为它决定了需要多少计算能力。ParagogerAI训练营 2img.ai
研究人员使用各种优化方法来处理复杂模型的计算需求。模型优化常用的三种技术是剪枝、量化和拓扑优化。
量化:这涉及降低模型权重和激活的精度,通常从浮点数降低到整数。精度降低为 16 位浮点数(FP16、BFLOAT16 -2 字节)或 8 位整数(INT8 -1 字节),而不是 32 位。
修剪:这涉及减少不需要和不太重要的参数的数量。
拓扑优化:这涉及将大模型中的信息压缩为更小、更高效的模型,以便更快地执行。这被称为模型提炼或知识提炼。
在本文中,我们探讨了生成式 AI 项目生命周期,从
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。