赞
踩
本篇博客将介绍如何使用Flink将数据从MySQL数据库实时传输到Kafka,这是一个常见的用例,适用于需要实时数据connector的场景。
在开始之前,确保你的环境中已经安装了以下软件:
Apache Flink 准备相关pom依赖
<?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>org.example</groupId> <artifactId>EastMoney</artifactId> <version>1.0-SNAPSHOT</version> <properties> <maven.compiler.source>8</maven.compiler.source> <maven.compiler.target>8</maven.compiler.target> <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding> </properties> <dependencies> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-clients_2.11</artifactId> <version>1.14.0</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-table-api-scala-bridge_2.11</artifactId> <version>1.14.0</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-table-planner_2.11</artifactId> <version>1.14.0</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-table-api-scala_2.11</artifactId> <version>1.14.0</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-connector-jdbc_2.11</artifactId> <version>1.14.0</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-csv</artifactId> <version>1.14.0</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-connector-kafka_2.11</artifactId> <version>1.14.0</version> </dependency> <dependency> <groupId>mysql</groupId> <artifactId>mysql-connector-java</artifactId> <version>8.0.25</version> </dependency> </dependencies> </project>
MySQL数据库,初始化mysql表
CREATE TABLE `t_stock_code_price` ( `id` bigint NOT NULL AUTO_INCREMENT, `code` varchar(64) CHARACTER SET utf8mb4 COLLATE utf8mb4_0900_ai_ci NOT NULL COMMENT '股票代码', `name` varchar(64) CHARACTER SET utf8mb4 COLLATE utf8mb4_0900_ai_ci NOT NULL COMMENT '股票名称', `close` double DEFAULT NULL COMMENT '最新价', `change_percent` double DEFAULT NULL COMMENT '涨跌幅', `change` double DEFAULT NULL COMMENT '涨跌额', `volume` double DEFAULT NULL COMMENT '成交量(手)', `amount` double DEFAULT NULL COMMENT '成交额', `amplitude` double DEFAULT NULL COMMENT '振幅', `turnover_rate` double DEFAULT NULL COMMENT '换手率', `peration` double DEFAULT NULL COMMENT '市盈率', `volume_rate` double DEFAULT NULL COMMENT '量比', `hign` double DEFAULT NULL COMMENT '最高', `low` double DEFAULT NULL COMMENT '最低', `open` double DEFAULT NULL COMMENT '今开', `previous_close` double DEFAULT NULL COMMENT '昨收', `pb` double DEFAULT NULL COMMENT '市净率', `create_time` varchar(64) NOT NULL COMMENT '写入时间', PRIMARY KEY (`id`) ) ENGINE=InnoDB AUTO_INCREMENT=5605 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci
1. 启动zookeeper
zkServer start
2. 启动kafka服务
kafka-server-start /opt/homebrew/etc/kafka/server.properties
3. 创建topic
kafka-topics --create --bootstrap-server 127.0.0.1:9092 --replication-factor 1 --partitions 1 --topic east_money
4. 消费数据
kafka-console-consumer --bootstrap-server 127.0.0.1:9092 --topic east_money --from-beginning
获取流执行环境:首先,我们通过StreamExecutionEnvironment.getExecutionEnvironment获取Flink的流执行环境,并设置其运行模式为流处理模式。
创建流表环境:接着,我们通过StreamTableEnvironment.create创建一个流表环境,这个环境允许我们使用SQL语句来操作数据流。
val senv = StreamExecutionEnvironment.getExecutionEnvironment
.setRuntimeMode(RuntimeExecutionMode.STREAMING)
val tEnv = StreamTableEnvironment.create(senv)
定义MySQL数据源表:我们使用一个SQL语句创建了一个临时表t_stock_code_price,这个表代表了我们要从MySQL读取的数据结构和连接信息。
val source_table = """ |CREATE TEMPORARY TABLE t_stock_code_price ( | id BIGINT NOT NULL, | code STRING NOT NULL, | name STRING NOT NULL, | `close` DOUBLE, | change_percent DOUBLE, | change DOUBLE, | volume DOUBLE, | amount DOUBLE, | amplitude DOUBLE, | turnover_rate DOUBLE, | peration DOUBLE, | volume_rate DOUBLE, | hign DOUBLE, | low DOUBLE, | `open` DOUBLE, | previous_close DOUBLE, | pb DOUBLE, | create_time STRING NOT NULL, | PRIMARY KEY (id) NOT ENFORCED |) WITH ( | 'connector' = 'jdbc', | 'url' = 'jdbc:mysql://localhost:3306/mydb', | 'driver' = 'com.mysql.cj.jdbc.Driver', | 'table-name' = 't_stock_code_price', | 'username' = 'root', | 'password' = '12345678' |) |""".stripMargin tEnv.executeSql(source_table)
定义Kafka目标表:然后,我们定义了一个Kafka表re_stock_code_price_kafka,指定了Kafka的连接参数和表结构。
tEnv.executeSql( "CREATE TABLE re_stock_code_price_kafka (" + "`id` BIGINT," + "`code` STRING," + "`name` STRING," + "`close` DOUBLE," + "`change_percent` DOUBLE," + "`change` DOUBLE," + "`volume` DOUBLE," + "`amount` DOUBLE," + "`amplitude` DOUBLE," + "`turnover_rate` DOUBLE," + "`operation` DOUBLE," + "`volume_rate` DOUBLE," + "`high` DOUBLE," + "`low` DOUBLE," + "`open` DOUBLE," + "`previous_close` DOUBLE," + "`pb` DOUBLE," + "`create_time` STRING," + "rise int"+ ") WITH (" + "'connector' = 'kafka'," + "'topic' = 'east_money'," + "'properties.bootstrap.servers' = '127.0.0.1:9092'," + "'properties.group.id' = 'mysql2kafka'," + "'scan.startup.mode' = 'earliest-offset'," + "'format' = 'csv'," + "'csv.field-delimiter' = ','" + ")" )
数据转换和写入:最后,我们执行了一个插入操作,将从MySQL读取的数据转换(这里通过case when语句添加了一个新字段rise)并写入到Kafka中。这个可以实现任何的sql etl 来满足我们的需求。
tEnv.executeSql("insert into re_stock_code_price_kafka select *,case when change_percent>0 then 1 else 0 end as rise from t_stock_code_price")
package org.east import org.apache.flink.api.common.RuntimeExecutionMode import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment import org.apache.flink.table.api.bridge.scala.StreamTableEnvironment object Mysql2Kafka { def main(args: Array[String]): Unit = { val senv = StreamExecutionEnvironment.getExecutionEnvironment .setRuntimeMode(RuntimeExecutionMode.STREAMING) val tEnv = StreamTableEnvironment.create(senv) val source_table = """ |CREATE TEMPORARY TABLE t_stock_code_price ( | id BIGINT NOT NULL, | code STRING NOT NULL, | name STRING NOT NULL, | `close` DOUBLE, | change_percent DOUBLE, | change DOUBLE, | volume DOUBLE, | amount DOUBLE, | amplitude DOUBLE, | turnover_rate DOUBLE, | peration DOUBLE, | volume_rate DOUBLE, | hign DOUBLE, | low DOUBLE, | `open` DOUBLE, | previous_close DOUBLE, | pb DOUBLE, | create_time STRING NOT NULL, | PRIMARY KEY (id) NOT ENFORCED |) WITH ( | 'connector' = 'jdbc', | 'url' = 'jdbc:mysql://localhost:3306/mydb', | 'driver' = 'com.mysql.cj.jdbc.Driver', | 'table-name' = 't_stock_code_price', | 'username' = 'root', | 'password' = '12345678' |) |""".stripMargin tEnv.executeSql(source_table) val result = tEnv.executeSql("select * from t_stock_code_price") result.print() tEnv.executeSql( "CREATE TABLE re_stock_code_price_kafka (" + "`id` BIGINT," + "`code` STRING," + "`name` STRING," + "`close` DOUBLE," + "`change_percent` DOUBLE," + "`change` DOUBLE," + "`volume` DOUBLE," + "`amount` DOUBLE," + "`amplitude` DOUBLE," + "`turnover_rate` DOUBLE," + "`operation` DOUBLE," + "`volume_rate` DOUBLE," + "`high` DOUBLE," + "`low` DOUBLE," + "`open` DOUBLE," + "`previous_close` DOUBLE," + "`pb` DOUBLE," + "`create_time` STRING," + "rise int"+ ") WITH (" + "'connector' = 'kafka'," + "'topic' = 'east_money'," + "'properties.bootstrap.servers' = '127.0.0.1:9092'," + "'properties.group.id' = 'mysql2kafka'," + "'scan.startup.mode' = 'earliest-offset'," + "'format' = 'csv'," + "'csv.field-delimiter' = ','" + ")" ) tEnv.executeSql("insert into re_stock_code_price_kafka select *,case when change_percent>0 then 1 else 0 end as rise from t_stock_code_price") } }
如有遇到问题可以找小编沟通交流哦。另外小编帮忙辅导大课作业,学生毕设等。不限于python,java,大数据,模型训练等。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。