当前位置:   article > 正文

使用Flink实现MySQL到Kafka的数据流转换_flink 消费mysql到kafka

flink 消费mysql到kafka

使用Flink实现MySQL到Kafka的数据流转换

本篇博客将介绍如何使用Flink将数据从MySQL数据库实时传输到Kafka,这是一个常见的用例,适用于需要实时数据connector的场景。
在这里插入图片描述

环境准备

在开始之前,确保你的环境中已经安装了以下软件:
Apache Flink 准备相关pom依赖

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>org.example</groupId>
    <artifactId>EastMoney</artifactId>
    <version>1.0-SNAPSHOT</version>

    <properties>
        <maven.compiler.source>8</maven.compiler.source>
        <maven.compiler.target>8</maven.compiler.target>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
    </properties>

    <dependencies>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-clients_2.11</artifactId>
            <version>1.14.0</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table-api-scala-bridge_2.11</artifactId>
            <version>1.14.0</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table-planner_2.11</artifactId>
            <version>1.14.0</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table-api-scala_2.11</artifactId>
            <version>1.14.0</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-jdbc_2.11</artifactId>
            <version>1.14.0</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-csv</artifactId>
            <version>1.14.0</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-kafka_2.11</artifactId>
            <version>1.14.0</version>
        </dependency>

        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
            <version>8.0.25</version>
        </dependency>
    </dependencies>

</project>
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62

MySQL数据库,初始化mysql表

CREATE TABLE `t_stock_code_price` (
  `id` bigint NOT NULL AUTO_INCREMENT,
  `code` varchar(64) CHARACTER SET utf8mb4 COLLATE utf8mb4_0900_ai_ci NOT NULL COMMENT '股票代码',
  `name` varchar(64) CHARACTER SET utf8mb4 COLLATE utf8mb4_0900_ai_ci NOT NULL COMMENT '股票名称',
  `close` double DEFAULT NULL COMMENT '最新价',
  `change_percent` double DEFAULT NULL COMMENT '涨跌幅',
  `change` double DEFAULT NULL COMMENT '涨跌额',
  `volume` double DEFAULT NULL COMMENT '成交量(手)',
  `amount` double DEFAULT NULL COMMENT '成交额',
  `amplitude` double DEFAULT NULL COMMENT '振幅',
  `turnover_rate` double DEFAULT NULL COMMENT '换手率',
  `peration` double DEFAULT NULL COMMENT '市盈率',
  `volume_rate` double DEFAULT NULL COMMENT '量比',
  `hign` double DEFAULT NULL COMMENT '最高',
  `low` double DEFAULT NULL COMMENT '最低',
  `open` double DEFAULT NULL COMMENT '今开',
  `previous_close` double DEFAULT NULL COMMENT '昨收',
  `pb` double DEFAULT NULL COMMENT '市净率',
  `create_time` varchar(64) NOT NULL COMMENT '写入时间',
  PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=5605 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21

Kafka消息队列

1. 启动zookeeper
 zkServer start
2. 启动kafka服务
 kafka-server-start /opt/homebrew/etc/kafka/server.properties
3. 创建topic
 kafka-topics --create --bootstrap-server 127.0.0.1:9092 --replication-factor 1 --partitions 1 --topic east_money
4. 消费数据
 kafka-console-consumer --bootstrap-server 127.0.0.1:9092 --topic east_money --from-beginning
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

步骤解释

获取流执行环境:首先,我们通过StreamExecutionEnvironment.getExecutionEnvironment获取Flink的流执行环境,并设置其运行模式为流处理模式。

创建流表环境:接着,我们通过StreamTableEnvironment.create创建一个流表环境,这个环境允许我们使用SQL语句来操作数据流。

val senv = StreamExecutionEnvironment.getExecutionEnvironment
      .setRuntimeMode(RuntimeExecutionMode.STREAMING)
    val tEnv = StreamTableEnvironment.create(senv)
  • 1
  • 2
  • 3

定义MySQL数据源表:我们使用一个SQL语句创建了一个临时表t_stock_code_price,这个表代表了我们要从MySQL读取的数据结构和连接信息。

val source_table =
      """
        |CREATE TEMPORARY TABLE t_stock_code_price (
        |  id BIGINT NOT NULL,
        |  code STRING NOT NULL,
        |  name STRING NOT NULL,
        |  `close` DOUBLE,
        |  change_percent DOUBLE,
        |  change DOUBLE,
        |  volume DOUBLE,
        |  amount DOUBLE,
        |  amplitude DOUBLE,
        |  turnover_rate DOUBLE,
        |  peration DOUBLE,
        |  volume_rate DOUBLE,
        |  hign DOUBLE,
        |  low DOUBLE,
        |  `open` DOUBLE,
        |  previous_close DOUBLE,
        |  pb DOUBLE,
        |  create_time STRING NOT NULL,
        |  PRIMARY KEY (id) NOT ENFORCED
        |) WITH (
        |   'connector' = 'jdbc',
        |   'url' = 'jdbc:mysql://localhost:3306/mydb',
        |   'driver' = 'com.mysql.cj.jdbc.Driver',
        |   'table-name' = 't_stock_code_price',
        |   'username' = 'root',
        |   'password' = '12345678'
        |)
        |""".stripMargin

    tEnv.executeSql(source_table)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33

定义Kafka目标表:然后,我们定义了一个Kafka表re_stock_code_price_kafka,指定了Kafka的连接参数和表结构。

tEnv.executeSql(
      "CREATE TABLE re_stock_code_price_kafka (" +
        "`id` BIGINT," +
        "`code` STRING," +
        "`name` STRING," +
        "`close` DOUBLE," +
        "`change_percent` DOUBLE," +
        "`change` DOUBLE," +
        "`volume` DOUBLE," +
        "`amount` DOUBLE," +
        "`amplitude` DOUBLE," +
        "`turnover_rate` DOUBLE," +
        "`operation` DOUBLE," +
        "`volume_rate` DOUBLE," +
        "`high` DOUBLE," +
        "`low` DOUBLE," +
        "`open` DOUBLE," +
        "`previous_close` DOUBLE," +
        "`pb` DOUBLE," +
        "`create_time` STRING," +
        "rise int"+
        ") WITH (" +
        "'connector' = 'kafka'," +
        "'topic' = 'east_money'," +
        "'properties.bootstrap.servers' = '127.0.0.1:9092'," +
        "'properties.group.id' = 'mysql2kafka'," +
        "'scan.startup.mode' = 'earliest-offset'," +
        "'format' = 'csv'," +
        "'csv.field-delimiter' = ','" +
        ")"
    )
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31

数据转换和写入:最后,我们执行了一个插入操作,将从MySQL读取的数据转换(这里通过case when语句添加了一个新字段rise)并写入到Kafka中。这个可以实现任何的sql etl 来满足我们的需求。

    tEnv.executeSql("insert into re_stock_code_price_kafka select *,case when change_percent>0 then 1 else 0 end as rise from t_stock_code_price")
  • 1

全部代码

package org.east

import org.apache.flink.api.common.RuntimeExecutionMode
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.table.api.bridge.scala.StreamTableEnvironment

object Mysql2Kafka {

  def main(args: Array[String]): Unit = {
    val senv = StreamExecutionEnvironment.getExecutionEnvironment
      .setRuntimeMode(RuntimeExecutionMode.STREAMING)
    val tEnv = StreamTableEnvironment.create(senv)

    val source_table =
      """
        |CREATE TEMPORARY TABLE t_stock_code_price (
        |  id BIGINT NOT NULL,
        |  code STRING NOT NULL,
        |  name STRING NOT NULL,
        |  `close` DOUBLE,
        |  change_percent DOUBLE,
        |  change DOUBLE,
        |  volume DOUBLE,
        |  amount DOUBLE,
        |  amplitude DOUBLE,
        |  turnover_rate DOUBLE,
        |  peration DOUBLE,
        |  volume_rate DOUBLE,
        |  hign DOUBLE,
        |  low DOUBLE,
        |  `open` DOUBLE,
        |  previous_close DOUBLE,
        |  pb DOUBLE,
        |  create_time STRING NOT NULL,
        |  PRIMARY KEY (id) NOT ENFORCED
        |) WITH (
        |   'connector' = 'jdbc',
        |   'url' = 'jdbc:mysql://localhost:3306/mydb',
        |   'driver' = 'com.mysql.cj.jdbc.Driver',
        |   'table-name' = 't_stock_code_price',
        |   'username' = 'root',
        |   'password' = '12345678'
        |)
        |""".stripMargin

    tEnv.executeSql(source_table)

    val result = tEnv.executeSql("select * from t_stock_code_price")
    result.print()


    tEnv.executeSql(
      "CREATE TABLE re_stock_code_price_kafka (" +
        "`id` BIGINT," +
        "`code` STRING," +
        "`name` STRING," +
        "`close` DOUBLE," +
        "`change_percent` DOUBLE," +
        "`change` DOUBLE," +
        "`volume` DOUBLE," +
        "`amount` DOUBLE," +
        "`amplitude` DOUBLE," +
        "`turnover_rate` DOUBLE," +
        "`operation` DOUBLE," +
        "`volume_rate` DOUBLE," +
        "`high` DOUBLE," +
        "`low` DOUBLE," +
        "`open` DOUBLE," +
        "`previous_close` DOUBLE," +
        "`pb` DOUBLE," +
        "`create_time` STRING," +
        "rise int"+
        ") WITH (" +
        "'connector' = 'kafka'," +
        "'topic' = 'east_money'," +
        "'properties.bootstrap.servers' = '127.0.0.1:9092'," +
        "'properties.group.id' = 'mysql2kafka'," +
        "'scan.startup.mode' = 'earliest-offset'," +
        "'format' = 'csv'," +
        "'csv.field-delimiter' = ','" +
        ")"
    )
    tEnv.executeSql("insert into re_stock_code_price_kafka select *,case when change_percent>0 then 1 else 0 end as rise from t_stock_code_price")

  }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86

如有遇到问题可以找小编沟通交流哦。另外小编帮忙辅导大课作业,学生毕设等。不限于python,java,大数据,模型训练等。
在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/人工智能uu/article/detail/836367
推荐阅读
相关标签
  

闽ICP备14008679号