赞
踩
在当今数字时代,语言模型已经成为自然语言处理任务的强大工具,从文本生成到情感分析和机器翻译等各个方面都有涉猎。然而,训练这些模型需要仔细的规划、大量的计算资源以及机器学习技术方面的专业知识。
那么一个大型语言模型(LLMs)到底是如何训练出来的呢?在查阅了解之后,我们将相关内容整理出来。在本文中,将和大家一起探讨训练LLMs所涉及的步骤,欢迎各位读者指正与补充。
大语言模型和传统机器学习模型在模型训练步骤方面有一些相同点,比如它们都需要:
不过,它们也存在一些不同点,和机器学习模型相比,大语言模型通常:
而传统机器学习模型可能更加灵活,可以根据任务的需求选择不同的特征工程和算法,在较小的数据集和资源下也能取得良好的效果。
在大模型训练过程中,数据清洗不单单是删除一些错误数据、重复项,还包括对不同语料数据的重新组织整合,同时,这些数据也可以重复训练不同的模型任务。因此,这里没有选择更佳熟悉的Data Cleaning,而是选用了Data Curation一词,感觉更佳恰当。
来自维基百科翻译:
数据策划是对从各种来源收集的数据进行组织和整合的过程。它涉及数据的标注、发布和呈现,以确保数据的价值随着时间的推移得以保持,并且数据仍然可以用于重复使用和保存。数据策划包括“所有为了原则性和受控的数据创建、维护和管理所需的过程,以及增加数据价值的能力”。
在训练数据整理阶段,收集大量的数据是关键。训练数据的质量和数量对LLMs的性能有着重要影响。收集的数据应该与模型的目标相关,多样化并且具有代表性的数据集,包括书籍、文章、网站或特定领域的语料库的文本。
数据收集完毕后,不能直接用于模型训练,还要进行各种处理,比如:
在将数据提供给模型之前,需要对其进行格式化和预处理。确保数据清洁、统一,以提高模型的训练效果。这包括:
这个步骤最常用的工具库就是Tokenizers,支持多种算法和语言,能快速对文本进行清洗和预处理。
选择合适的训练框架是至关重要的,常用的框架包括TensorFlow、PyTorch等,根据需求和技术熟练程度选择合适的框架。同样重要的还有配置训练环境,包括硬件资源和软件依赖项,并确保训练过程的顺利运行。
配置训练环境:
训练框架:
在训练完成后,对模型进行评估是必不可少的。
在机器学习模型训练中,我们会通常比较看重预测结果的准确性,使用准确度、召回率、F1分数等这些评估指标来衡量模型的性能,同时,将模型在测试集上进行评估,以确保其在未见数据上的泛化能力。
而在LLM中,使用者希望模型能够完成问答、总结、文本分析、翻译等等文本处理任务,因此,评估一个大语言模型(LLM)涉及多个方面,包括模型的语言能力、生成能力、语义理解、文本生成质量等,所使用的指标也各有不同。
下面选取了几个:
这是在收集资料过程中,发现的一些大模型排行榜, 通过不同的指标对比现在大模型的各种性能表现。
本文探讨了训练大型语言模型(LLMs)的过程步骤,从数据处理到模型评估和实际应用。LLMs在解决文本任务中发挥着重要作用,随着自然语言处理技术的进步,它们在日常工作和生活中的应用也日益广泛。
在查阅资料的过程中,我们也发现了各种教程、指南和代码示例,以及多样的评估指标和领域专用模型,如图片和视频生成模型,这表明了LLMs在不断进步和创新,其复杂性和多样性也在日益变化。
希望本文能够为读者提供一些有价值的信息和启发,激发大家对于LLMs和自然语言处理技术的兴趣和探索欲望。让我们共同期待着LLMs在未来的发展中发挥更大的作用,为我们的生活和工作带来更多便利和可能性。
参考文章链接
A Step-by-Step Guide to Training Your Own Large Language Models (LLMs)
What are Large Language Models(LLMs)?
Large language model - Wikipedia
Frameworks for Serving LLMs. A comprehensive guide into LLMs inference and serving | by Sergei Savvov | Jul, 2023 | Medium | Better Programming
Understanding LangChain - A Framework for LLM Applications
Evaluating Large Language Model (LLM) systems: Metrics, challenges, and best practices | by Jane Huang | Data Science at Microsoft | Mar, 2024 | Medium
An In-depth Guide to Benchmarking LLMs | Symbl.ai
LLM Benchmarks: MMLU, HellaSwag, BBH, and Beyond - Confident AI
LLM Benchmarks: Guide to Evaluating Language Models | Deepgram
How to Evaluate LLMs: A Complete Metric Framework - Microsoft Research
Evaluating Large Language Models
How to Evaluate LLMs? - Analytics Vidhya
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。