赞
踩
后面我们会对上面的一些核心概念进行更深入的介绍。在介绍完Kafka的核心概念之后,我们来看一下Kafka的对外提供的基本功能,组件及架构设计。
Kafka API
如上图所示,Kafka主要包含四个主要的API组件:
1. Producer API
应用程序通过Producer API向Kafka集群发送一个或多个Topic的消息。
2. Consumer API
应用程序通过Consumer API,向Kafka集群订阅一个或多个Topic的消息,并处理这些Topic下接收到的消息。
3. Streams API
应用程序通过使用Streams API充当流处理器(Stream Processor),从一个或者多个Topic获取输入流,并生产一个输出流到一个或者多个Topic,能够有效地将输入流进行转变后变成输出流输出到Kafka集群。
4. Connect API
允许应用程序通过Connect API构建和运行可重用的生产者或者消费者,能够把kafka主题连接到现有的应用程序或数据系统。Connect实际上就做了两件事情:使用Source Connector从数据源(如:DB)中读取数据写入到Topic中,然后再通过Sink Connector读取Topic中的数据输出到另一端(如:DB),以实现消息数据在外部存储和Kafka集群之间的传输。
Kafka架构
接下来我们将从Kafka的架构出发,重点介绍Kafka的主要组件及实现原理。Kafka支持消息持久化,消费端是通过主动拉取消息进行消息消费的,订阅状态和订阅关系由客户端负责维护,消息消费完后不会立刻删除,会保留历史消息,一般默认保留7天,因此可以通过在支持多订阅者时,消息无需复制多分,只需要存储一份就可以。下面将详细介绍每个组件的实现原理。
1. Producer
Producer是Kafka中的消息生产者,主要用于生产带有特定Topic的消息,生产者生产的消息通过Topic进行归类,保存在Kafka 集群的Broker上,具体的是保存在指定的partition 的目录下,以Segment的方式(.log文件和.index文件)进行存储。
2. Consumer
Consumer是Kafka中的消费者,主要用于消费指定Topic的消息,Consumer是通过主动拉取的方式从Kafka集群中消费消息,消费者一定属于某一个特定的消费组。
3. Topic
Kafka中的消息是根据Topic进行分类的,Topic是支持多订阅的,一个Topic可以有多个不同的订阅消息的消费者。Kafka集群Topic的数量没有限制,同一个Topic的数据会被划分在同一个目录下,一个Topic可以包含1至多个分区,所有分区的消息加在一起就是一个Topic的所有消息。
4. Partition
在Kafka中,为了提升消息的消费速度,可以为每个Topic分配多个Partition,这也是就之前我们说到的,Kafka是支持多分区的。默认情况下,一个Topic的消息只存放在一个分区中。Topic的所有分区的消息合并起来,就是一个Topic下的所有消息。每个分区都有一个从0开始的编号,每个分区内的数据都是有序的,但是不同分区直接的数据是不能保证有序的,因为不同的分区需要不同的Consumer去消费,每个Partition只能分配一个Consumer,但是一个Consumer可以同时一个Topic的多个Partition。
5. Consumer Group
Kafka中的每一个Consumer都归属于一个特定的Consumer Group,如果不指定,那么所有的Consumer都属于同一个默认的Consumer Group。Consumer Group由一个或多个Consumer组成,同一个Consumer Group中的Consumer对同一条消息只消费一次。每个Consumer Group都有一个唯一的ID,即Group ID,也称之为Group Name。Consumer Group内的所有Consumer协调在一起订阅一个Topic的所有Partition,且每个Partition只能由一个Consuemr Group中的一个Consumer进行消费,但是可以由不同的Consumer Group中的一个Consumer进行消费。如下图所示:
在层级关系上来说Consumer好比是跟Topic对应的,而Consumer就对应于Topic下的Partition。Consumer Group中的Consumer数量和Topic下的Partition数量共同决定了消息消费的并发量,且Partition数量决定了最终并发量,因为一个Partition只能由一个Consumer进行消费。当一个Consumer Group中Consumer数量超过订阅的Topic下的Partition数量时,Kafka会为每个Partition分配一个Consumer,多出来的Consumer会处于空闲状态。当Consumer Group中Consumer数量少于当前定于的Topic中的Partition数量是,单个Consumer将承担多个Partition的消费工作。如上图所示,Consumer Group B中的每个Consumer需要消费两个Partition中的数据,而Consumer Group C中会多出来一个空闲的Consumer4。总结下来就是:同一个Topic下的Partition数量越多,同一时间可以有越多的Consumer进行消费,消费的速度就会越快,吞吐量就越高。同时,Consumer Group中的Consumer数量需要控制为小于等于Partition数量,且最好是整数倍:如1,2,4等。
6. Segment
考虑到消息消费的性能,Kafka中的消息在每个Partition中是以分段的形式进行存储的,即每1G消息新建一个Segment,每个Segment包含两个文件:.log文件和.index文件。之前我们已经说过,.log文件就是Kafka实际存储Producer生产的消息,而.index文件采用稀疏索引的方式存储.log文件中对应消息的逻辑编号和物理偏移地址(offset),以便于加快数据的查询速度。.log文件和.index文件是一一对应,成对出现的。下图展示了.log文件和.index文件在Partition中的存在方式。
Kafka里面每一条消息都有自己的逻辑offset(相对偏移量)以及存在物理磁盘上面实际的物理地址便宜量Position,也就是说在Kafka中一条消息有两个位置:offset(相对偏移量)和position(磁盘物理偏移地址)。在kafka的设计中,将消息的offset作为了Segment文件名的一部分。Segment文件命名规则为:Partition全局的第一个Segment从0开始,后续每个segment文件名为上一个Partition的最大offset(Message的offset,非实际物理地偏移地址,实际物理地址需映射到.log中,后面会详细介绍在.log文件中查询消息的原理)。数值最大为64位long大小,由20位数字表示,前置用0填充。
上图展示了.index文件和.log文件直接的映射关系,通过上图,我们可以简单介绍一下Kafka在Segment中查找Message的过程:
1.根据需要消费的下一个消息的offset,这里假设是7,使用二分查找在Partition中查找到文件名小于(一定要小于,因为文件名编号等于当前offset的文件里存的都是大于当前offset的消息)当前offset的最大编号的.index文件,这里自然是查找到了00000000000000000000.index。
2.在.index文件中,使用二分查找,找到offset小于或者等于指定offset(这里假设是7)的最大的offset,这里查到的是6,然后获取到index文件中offset为6指向的Position(物理偏移地址)为258。
3.在.log文件中,从磁盘位置258开始顺序扫描,直到找到offset为7的Message。
至此,我们就简单介绍完了Segment的基本组件.index文件和.log文件的存储和查询原理。但是我们会发现一个问题:.index文件中的offset并不是按顺序连续存储的,为什么Kafka要将索引文件设计成这种不连续的样子?这种不连续的索引设计方式称之为稀疏索引,Kafka中采用了稀疏索引的方式读取索引,kafka每当.log中写入了4k大小的数据,就往.index里以追加的写入一条索引记录。使用稀疏索引主要有以下原因:
(1)索引稀疏存储,可以大幅降低.index文件占用存储空间大小。
(2)稀疏索引文件较小,可以全部读取到内存中,可以避免读取索引的时候进行频繁的IO磁盘操作,以便通过索引快速地定位到.log文件中的Message。
7. Message
Message是实际发送和订阅的信息是实际载体,Producer发送到Kafka集群中的每条消息,都被Kafka包装成了一个Message对象,之后再存储在磁盘中,而不是直接存储的。Message在磁盘中的物理结构如下所示。
On-disk format of a message
offset : 8 bytes
message length : 4 bytes (value: 4 + 1 + 1 + 8(if magic value > 0) + 4 + K + 4 + V)
crc : 4 bytes
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数Java工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年Java开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Java开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!
如果你觉得这些内容对你有帮助,可以扫码获取!!(备注Java获取)
首先分享一份学习大纲,内容较多,涵盖了互联网行业所有的流行以及核心技术,以截图形式分享:
(亿级流量性能调优实战+一线大厂分布式实战+架构师筑基必备技能+设计思想开源框架解读+性能直线提升架构技术+高效存储让项目性能起飞+分布式扩展到微服务架构…实在是太多了)
其次分享一些技术知识,以截图形式分享一部分:
Tomcat架构解析:
算法训练+高分宝典:
Spring Cloud+Docker微服务实战:
最后分享一波面试资料:
切莫死记硬背,小心面试官直接让你出门右拐
1000道互联网Java面试题:
Java高级架构面试知识整理:
《互联网大厂面试真题解析、进阶开发核心学习笔记、全套讲解视频、实战项目源码讲义》点击传送门即可获取!
8552501)]
Java高级架构面试知识整理:
[外链图片转存中…(img-7ATIbw92-1713458552501)]
《互联网大厂面试真题解析、进阶开发核心学习笔记、全套讲解视频、实战项目源码讲义》点击传送门即可获取!
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。