赞
踩
【导语】7 月 31 日晚,自然语言处理领域最大顶会 ACL 2019 公布了今年的八个论文奖项,其中最佳长论文的获奖者被来自中国科学院大学、中国科学院计算技术研究所、腾讯 WeChat AI、华为诺亚方舟实验室、伍斯特理工学院等机构的联合论文所斩获。除了这篇最佳长论文,腾讯在今年的 ACL 会议上还有哪些研究论文被录取?今天,我们就用这篇文章为大家做介绍。
2、《Incremental Transformer with Deliberation Decoder for Document Grounded Conversations》基于文档级知识的对话: 带有推敲解码机制的增量式 Transformer
本文由腾讯微信AI与华中科技大学等联合完成。本文主要研究基于文档知识的对话,在给定文档的内容时生成上下文连贯、正确利用知识的回复。 论文地址: https://www.aclweb.org/anthology/P19-1002 文档知识在我们日常对话中起着至关重要的作用,而现有的对话模型并没有有效地利用这类知识。在本文中,作者提出了一种新的基于Transformer的基于文档知识的多轮对话模型。 作者设计了一个增量式Transformer来编码多轮对话以及相关文档中的知识。此外,在人类认知过程的启发下,作者还设计了一个具有两次解码过程的推敲解码器,来提高上下文的一致性和知识应用的正确性。 第一次解码过程注重上下文回复的一致性,第二次解码过程注重知识应用的正确性。在真实的基于文档的多轮对话数据集的实验研究证明,模型生成的回复在上下文一致性和知识相关性方面都显著优于其他基线模型。
本文由腾讯微信AI与清华大学联合完成。本文提出了目前最大的篇章级精标注关系抽取数据集DocRED。目前DocRED已可公开获取,同时,还有相关竞赛,对这个领域感兴趣的小伙伴们可以关注,参与一波~
论文地址: https://www.aclweb.org/anthology/P19-1074 数据集DocRED获取地址: https://github.com/thunlp/DocRED 参加竞赛: https://competitions.codalab.org/competitions/20147 关系抽取是给定一段文本,自动找出文本中提及的实体间关系的任务。多数已有的关系抽取数据集只关注同一个句子中提及的实体间的关系。少数数据集关注到了跨句子的实体间的关系,但存在数据规模小、数据采用远距离监督(distant supervision)方法构建噪音大或数据集特定于某个领域等问题,不利于跨句子的关系抽取相关研究工作的开展。 本文提出了目前最大的篇章级精标注关系抽取数据集DocRED。该数据集包含对5,053篇Wikipedia文章的标注,标注内容包括96种关系、132,375个实体和56,354个关系事实。 在该数据集中,超过40.7%的关系事实必须联合多个句子的信息才能被正确抽取,对关系抽取模型提出了更高的要求。此外,该数据集还额外提供了大规模的采用远距离监督技术标注的数据,以支持半监督方法的研究。 数据示例:每篇文章都被标注了实体(entity mention,蓝色或下划线)、句内/间关系(intra-/inter-sentence relation,橙色),以及支持证据(supporting evidence)。该例子展示了该篇文章中19个关系事实中的2个。需特别说明的是,同一个实体的不同别称会被归并(如Kungliga Hovkapellet和Royal Court Orchestra)。
(*本文为 AI科技大本营整理文章,转载请联系微信 1092722531)
社群福利
扫码添加小助手,回复:大会,加入2019 AI开发者大会福利群,每周一、三、五更新技术福利,还有不定期的抽奖活动~
◆
精彩推荐
◆
60+技术大咖与你相约 2019 AI ProCon!大会早鸟票已售罄,优惠票速抢进行中......2019 AI开发者大会将于9月6日-7日在北京举行,这一届AI开发者大会有哪些亮点?一线公司的大牛们都在关注什么?AI行业的风向是什么?2019 AI开发者大会,倾听大牛分享,聚焦技术实践,和万千开发者共成长。
推荐阅读
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。