赞
踩
上一期中,ofter介绍了计算机视觉的常用神经网络模型,以及如何选择模型,今天我们就趁热打铁拿个实际的模型跑跑,欢迎大家跨入数据科学家们的世界。
作为数据科学家,我们必须明白投入大量时间精力进行机器学习、深度学习的目的是什么?将非结构化、低密度、低价值的大数据转换为高密度和高价值数据。当我们对张三发布的某张照片进行内容识别的时候,这张照片就是非结构化、低密度、低价值的数据;但是当我们对他多年发布的N张照片进行内容识别后,我们大概率可以分析得出张三的生活习惯、爱好、朋友圈等等。
数据科学家的主要任务是使用正确或表现良好的模型进行数据分析的实际应用。因此,今天ofter以图像检测为例,使用训练好的模型测试下检测效率和效果。本案例使用的框架Tensorflow+Keras,训练好的模型RetinaNet,编程语言python。其中,训练好的模型,大家可以从modelzoo中或其他途径搜索https://model
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。