当前位置:   article > 正文

Spark Rdd 之map、flatMap、mapValues、flatMapValues、flatMapWith_mapvalues,flatmap详解

mapvalues,flatmap详解

map(function)

map是对RDD中的每个元素都执行一个指定的函数来产生一个新的RDD。任何原RDD中的元素在新RDD中都有且只有一个元素与之对应。

举例:

下面例子中把原RDD中每个元素都乘以2来产生一个新的RDD。

val a = sc.parallelize(1 to 9, 3)
val b = a.map(x => x*2)//x => x*2是一个函数,x是传入参数即RDD的每个元素,x*2是返回值
a.collect
//结果Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9)
b.collect
//结果Array[Int] = Array(2, 4, 6, 8, 10, 12, 14, 16, 18)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

flatMap(function)

与map类似,区别是原RDD中的元素经map处理后只能生成一个元素,而原RDD中的元素经flatmap处理后可生成多个元素

val a = sc.parallelize(1 to 4, 2)
val b = a.flatMap(x => 1 to x)//每个元素扩展
b.collect
/*
结果    Array[Int] = Array( 1, 
                           1, 2, 
                           1, 2, 3, 
                           1, 2, 3, 4)
*/
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

mapValues(function)

原RDD中的Key保持不变,与新的Value一起组成新的RDD中的元素。因此,该函数只适用于元素为KV对的RDD。

val rdd1 = sc.parallelize(List("dog", "tiger", "lion", "cat", "panther", " eagle"), 2)
    val rdd2: RDD[(Int, String)] = rdd1.map(x => (x.length, x))
	  rdd2.mapValues(str=>{
	     str.length+"_"+str
	   }).foreach(println)

输出:  
(3,3_dog)
(5,5_tiger)
(4,4_lion)
(3,3_cat)
(7,7_panther)
(6,6_ eagle)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

flatMapValues(function)

flatMapValues类似于mapValues,不同的在于flatMapValues应用于元素为KV对的RDD中Value。每个一元素的Value被输入函数映射为一系列的值,然后这些值再与原RDD中的Key组成一系列新的KV对。

举例:

下述例子中原RDD中每个元素的值被转换为一个序列(从其当前值到5),比如第一个KV对(1,2), 其值2被转换为2,3,4,5。然后其再与原KV对中Key组成一系列新的KV对(1,2),(1,3),(1,4),(1,5)。

val a = sc.parallelize(List((1,2),(3,4),(5,6)))
val b = a.flatMapValues(x=>1 to x)
b.collect.foreach(println(_))
/*
(1,1)
(1,2)
(3,1)
(3,2)
(3,3)
(3,4)
(5,1)
(5,2)
(5,3)
(5,4)
(5,5)
(5,6)
*/
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

flatMapWith

flatMapWith与mapWith很类似,都是接收两个函数,一个函数把partitionIndex作为输入,输出是一个新类型A;另外一个函数是以二元组(T,A)作为输入,输出为一个序列,这些序列里面的元素组成了新的RDD。它的定义如下:

def flatMapWith[A: ClassTag, U: ClassTag](constructA: Int => A, preservesPartitioning: Boolean = false)(f: (T, A) => Seq[U]): RDD[U]
  • 1

举例:

scala> val a = sc.parallelize(List(1,2,3,4,5,6,7,8,9), 3)
scala> a.flatMapWith(x => x, true)((x, y) => List(y, x)).collect
res58: Array[Int] = Array(0, 1, 0, 2, 0, 3, 1, 4, 1, 5, 1, 6, 2, 7, 2,
8, 2, 9)
  • 1
  • 2
  • 3
  • 4

参考

参考链接

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/从前慢现在也慢/article/detail/466765
推荐阅读
  

闽ICP备14008679号