赞
踩
14. Adaptive Class Suppression Loss for Long-Tail Object Detection
作者单位: 中科院, 国科大, ObjectEye, 北京大学, 鹏城实验室, Nexwise
Paper: https://arxiv.org/abs/2104.00885
Code: https://github.com/CASIA-IVA-Lab/ACSL
15. VarifocalNet: An IoU-aware Dense Object Detector
作者单位: 昆士兰科技大学, 昆士兰大学
Paper(Oral): https://arxiv.org/abs/2008.13367
Code: https://github.com/hyz-xmaster/VarifocalNet
16. OTA: Optimal Transport Assignment for Object Detection
作者单位: 早稻田大学, 旷视科技
Paper: https://arxiv.org/abs/2103.14259
Code: https://github.com/Megvii-BaseDetection/OTA
17. Distilling Object Detectors via Decoupled Features
作者单位: 华为诺亚, 悉尼大学
Paper: https://arxiv.org/abs/2103.14475
Code: https://github.com/ggjy/DeFeat.pytorch
18. Robust and Accurate Object Detection via Adversarial Learning
作者单位: 谷歌, UCLA, UCSC
Paper: https://arxiv.org/abs/2103.13886
Code: None
19. OPANAS: One-Shot Path Aggregation Network Architecture Search for Object Detection
作者单位: 北京大学, Anyvision, 石溪大学
Paper: https://arxiv.org/abs/2103.04507
Code: https://github.com/VDIGPKU/OPANAS
20. Multiple Instance Active Learning for Object Detection
作者单位: 国科大, 华为诺亚, 清华大学
Paper: https://openaccess.thecvf.com/content/CVPR2021/papers/Yuan_Multiple_Instance_Active_Learning_for_Object_Detection_CVPR_2021_paper.pdf
Code: https://github.com/yuantn/MI-AOD
21. Towards Open World Object Detection
作者单位: 印度理工学院, MBZUAI, 澳大利亚国立大学, 林雪平大学
Paper(Oral): https://arxiv.org/abs/2103.02603
Code: https://github.com/JosephKJ/OWOD
22. RankDetNet: Delving Into Ranking Constraints for Object Detection
作者单位: 赛灵思
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Liu_RankDetNet_Delving_Into_Ranking_Constraints_for_Object_Detection_CVPR_2021_paper.html
Code: None
23. Dense Label Encoding for Boundary Discontinuity Free Rotation Detection
作者单位: 上海交通大学, 国科大
Paper: https://arxiv.org/abs/2011.09670
Code1: https://github.com/Thinklab-SJTU/DCL_RetinaNet_Tensorflow
Code2: https://github.com/yangxue0827/RotationDetection
24. ReDet: A Rotation-equivariant Detector for Aerial Object Detection
作者单位: 武汉大学
Paper: https://arxiv.org/abs/2103.07733
Code: https://github.com/csuhan/ReDet
25. Beyond Bounding-Box: Convex-Hull Feature Adaptation for Oriented and Densely Packed Object Detection
作者单位: 国科大, 清华大学
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Guo_Beyond_Bounding-Box_Convex-Hull_Feature_Adaptation_for_Oriented_and_Densely_Packed_CVPR_2021_paper.html
Code: https://github.com/SDL-GuoZonghao/BeyondBoundingBox
26. Accurate Few-Shot Object Detection With Support-Query Mutual Guidance and Hybrid Loss
作者单位: 复旦大学, 同济大学, 浙江大学
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Zhang_Accurate_Few-Shot_Object_Detection_With_Support-Query_Mutual_Guidance_and_Hybrid_CVPR_2021_paper.html
Code: None
27. Adaptive Image Transformer for One-Shot Object Detection
作者单位: 中央研究院, 台湾AI Labs
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Chen_Adaptive_Image_Transformer_for_One-Shot_Object_Detection_CVPR_2021_paper.html
Code: None
28. Dense Relation Distillation with Context-aware Aggregation for Few-Shot Object Detection
作者单位: 北京大学, 北邮
Paper: https://arxiv.org/abs/2103.17115
Code: https://github.com/hzhupku/DCNet
29. Semantic Relation Reasoning for Shot-Stable Few-Shot Object Detection
作者单位: 卡内基梅隆大学(CMU)
Paper: https://arxiv.org/abs/2103.01903
Code: None
30. FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding
作者单位: 南加利福尼亚大学, 旷视科技
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Sun_FSCE_Few-Shot_Object_Detection_via_Contrastive_Proposal_Encoding_CVPR_2021_paper.html
Code: https://github.com/MegviiDetection/FSCE
31. Hallucination Improves Few-Shot Object Detection
作者单位: 伊利诺伊大学厄巴纳-香槟分校
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Zhang_Hallucination_Improves_Few-Shot_Object_Detection_CVPR_2021_paper.html
Code: https://github.com/pppplin/HallucFsDet
32. Few-Shot Object Detection via Classification Refinement and Distractor Retreatment
作者单位: 新加坡国立大学, SIMTech
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Li_Few-Shot_Object_Detection_via_Classification_Refinement_and_Distractor_Retreatment_CVPR_2021_paper.html
Code: None
33. Generalized Few-Shot Object Detection Without Forgetting
作者单位: 旷视科技
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Fan_Generalized_Few-Shot_Object_Detection_Without_Forgetting_CVPR_2021_paper.html
Code: None
34. Transformation Invariant Few-Shot Object Detection
作者单位: 华为诺亚方舟实验室
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Li_Transformation_Invariant_Few-Shot_Object_Detection_CVPR_2021_paper.html
Code: None
35. UniT: Unified Knowledge Transfer for Any-Shot Object Detection and Segmentation
作者单位: 不列颠哥伦比亚大学, Vector AI, CIFAR AI Chair
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Khandelwal_UniT_Unified_Knowledge_Transfer_for_Any-Shot_Object_Detection_and_Segmentation_CVPR_2021_paper.html
Code: https://github.com/ubc-vision/UniT
36. Beyond Max-Margin: Class Margin Equilibrium for Few-Shot Object Detection
作者单位: 国科大, 厦门大学, 鹏城实验室
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Li_Beyond_Max-Margin_Class_Margin_Equilibrium_for_Few-Shot_Object_Detection_CVPR_2021_paper.html
Code: https://github.com/Bohao-Lee/CME
37. Points As Queries: Weakly Semi-Supervised Object Detection by Points]
作者单位: 旷视科技, 复旦大学
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Chen_Points_As_Queries_Weakly_Semi-Supervised_Object_Detection_by_Points_CVPR_2021_paper.html
Code: None
38. Data-Uncertainty Guided Multi-Phase Learning for Semi-Supervised Object Detection
作者单位: 清华大学
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Wang_Data-Uncertainty_Guided_Multi-Phase_Learning_for_Semi-Supervised_Object_Detection_CVPR_2021_paper.html
Code: None
39. Positive-Unlabeled Data Purification in the Wild for Object Detection
作者单位: 华为诺亚方舟实验室, 悉尼大学, 北京大学
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Guo_Positive-Unlabeled_Data_Purification_in_the_Wild_for_Object_Detection_CVPR_2021_paper.html
Code: None
40. Interactive Self-Training With Mean Teachers for Semi-Supervised Object Detection
作者单位: 阿里巴巴, 香港理工大学
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Yang_Interactive_Self-Training_With_Mean_Teachers_for_Semi-Supervised_Object_Detection_CVPR_2021_paper.html
Code: None
41. Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework
作者单位: 阿里巴巴
Paper: https://arxiv.org/abs/2103.11402
Code: None
42. Humble Teachers Teach Better Students for Semi-Supervised Object Detection
作者单位: 卡内基梅隆大学(CMU), 亚马逊
Homepage: https://yihet.com/humble-teacher
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Tang_Humble_Teachers_Teach_Better_Students_for_Semi-Supervised_Object_Detection_CVPR_2021_paper.html
Code: https://github.com/lryta/HumbleTeacher
43. Interpolation-Based Semi-Supervised Learning for Object Detection
作者单位: 首尔大学, 阿尔托大学等
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Jeong_Interpolation-Based_Semi-Supervised_Learning_for_Object_Detection_CVPR_2021_paper.html
Code: https://github.com/soo89/ISD-SSD
===================================================================
44. Domain-Specific Suppression for Adaptive Object Detection
作者单位: 中科院, 寒武纪, 国科大
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Wang_Domain-Specific_Suppression_for_Adaptive_Object_Detection_CVPR_2021_paper.html
Code: None
45. MeGA-CDA: Memory Guided Attention for Category-Aware Unsupervised Domain Adaptive Object Detection
作者单位: 约翰斯·霍普金斯大学, 梅赛德斯—奔驰
Paper: https://arxiv.org/abs/2103.04224
Code: None
46. Unbiased Mean Teacher for Cross-Domain Object Detection
作者单位: 电子科技大学, ETH Zurich
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Deng_Unbiased_Mean_Teacher_for_Cross-Domain_Object_Detection_CVPR_2021_paper.html
Code: https://github.com/kinredon/umt
47. I^3Net: Implicit Instance-Invariant Network for Adapting One-Stage Object Detectors
作者单位: 香港大学, 厦门大学, Deepwise AI Lab
Paper: https://arxiv.org/abs/2103.13757
Code: None
48. There Is More Than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking With Sound by Distilling Multimodal Knowledge
作者单位: 弗莱堡大学
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Valverde_There_Is_More_Than_Meets_the_Eye_Self-Supervised_Multi-Object_Detection_CVPR_2021_paper.html
Code: http://rl.uni-freiburg.de/research/multimodal-distill
49. Instance Localization for Self-supervised Detection Pretraining
作者单位: 香港中文大学, 微软亚洲研究院
Paper: https://arxiv.org/abs/2102.08318
Code: https://github.com/limbo0000/InstanceLoc
50. Informative and Consistent Correspondence Mining for Cross-Domain Weakly Supervised Object Detection
作者单位: 北航, 鹏城实验室, 商汤科技
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Hou_Informative_and_Consistent_Correspondence_Mining_for_Cross-Domain_Weakly_Supervised_Object_CVPR_2021_paper.html
Code: None
51. DAP: Detection-Aware Pre-training with Weak Supervision
作者单位: UIUC, 微软
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Zhong_DAP_Detection-Aware_Pre-Training_With_Weak_Supervision_CVPR_2021_paper.html
Code: None
52. Open-Vocabulary Object Detection Using Captions
作者单位:Snap, 哥伦比亚大学
Paper(Oral): https://openaccess.thecvf.com/content/CVPR2021/html/Zareian_Open-Vocabulary_Object_Detection_Using_Captions_CVPR_2021_paper.html
Code: https://github.com/alirezazareian/ovr-cnn
53. Depth From Camera Motion and Object Detection
作者单位: 密歇根大学, SIAI
Paper: https://arxiv.org/abs/2103.01468
Code: https://github.com/griffbr/ODMD
Dataset: https://github.com/griffbr/ODMD
54. Unsupervised Object Detection With LIDAR Clues
作者单位: 商汤科技, 国科大, 中科大
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Tian_Unsupervised_Object_Detection_With_LIDAR_Clues_CVPR_2021_paper.html
Code: None
55. GAIA: A Transfer Learning System of Object Detection That Fits Your Needs
作者单位: 国科大, 北理, 中科院, 商汤科技
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Bu_GAIA_A_Transfer_Learning_System_of_Object_Detection_That_Fits_CVPR_2021_paper.html
Code: https://github.com/GAIA-vision/GAIA-det
56. General Instance Distillation for Object Detection
作者单位: 旷视科技, 北航
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Dai_General_Instance_Distillation_for_Object_Detection_CVPR_2021_paper.html
Code: None
57. AQD: Towards Accurate Quantized Object Detection
作者单位: 蒙纳士大学, 阿德莱德大学, 华南理工大学
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Chen_AQD_Towards_Accurate_Quantized_Object_Detection_CVPR_2021_paper.html
Code: https://github.com/aim-uofa/model-quantization
58. Scale-Aware Automatic Augmentation for Object Detection
作者单位: 香港中文大学, 字节跳动AI Lab, 思谋科技
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Chen_Scale-Aware_Automatic_Augmentation_for_Object_Detection_CVPR_2021_paper.html
Code: https://github.com/Jia-Research-Lab/SA-AutoAug
59. Equalization Loss v2: A New Gradient Balance Approach for Long-Tailed Object Detection
作者单位: 同济大学, 商汤科技, 清华大学
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Tan_Equalization_Loss_v2_A_New_Gradient_Balance_Approach_for_Long-Tailed_CVPR_2021_paper.html
Code: https://github.com/tztztztztz/eqlv2
60. Class-Aware Robust Adversarial Training for Object Detection
作者单位: 哥伦比亚大学, 中央研究院
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Chen_Class-Aware_Robust_Adversarial_Training_for_Object_Detection_CVPR_2021_paper.html
Code: None
61. Improved Handling of Motion Blur in Online Object Detection
作者单位: 伦敦大学学院
Homepage: http://visual.cs.ucl.ac.uk/pubs/handlingMotionBlur/
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Sayed_Improved_Handling_of_Motion_Blur_in_Online_Object_Detection_CVPR_2021_paper.html
Code: None
62. Multiple Instance Active Learning for Object Detection
作者单位: 国科大, 华为诺亚
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Yuan_Multiple_Instance_Active_Learning_for_Object_Detection_CVPR_2021_paper.html
Code: https://github.com/yuantn/MI-AOD
63. Neural Auto-Exposure for High-Dynamic Range Object Detection
作者单位: Algolux, 普林斯顿大学
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Onzon_Neural_Auto-Exposure_for_High-Dynamic_Range_Object_Detection_CVPR_2021_paper.html
Code: None
64. Generalizable Pedestrian Detection: The Elephant in the Room
作者单位: IIAI, 阿尔托大学
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Hasan_Generalizable_Pedestrian_Detection_The_Elephant_in_the_Room_CVPR_2021_paper.html
Code: https://github.com/hasanirtiza/Pedestron
65. Neural Auto-Exposure for High-Dynamic Range Object Detection
作者单位: Algolux, 普林斯顿大学
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Onzon_Neural_Auto-Exposure_for_High-Dynamic_Range_Object_Detection_CVPR_2021_paper.html
Code: None
===================================================================================
LightTrack: Finding Lightweight Neural Networks for Object Tracking via One-Shot Architecture Search
Paper: https://arxiv.org/abs/2104.14545
Code: https://github.com/researchmm/LightTrack
Towards More Flexible and Accurate Object Tracking with Natural Language: Algorithms and Benchmark
Homepage: https://sites.google.com/view/langtrackbenchmark/
Paper: https://arxiv.org/abs/2103.16746
Evaluation Toolkit: https://github.com/wangxiao5791509/TNL2K_evaluation_toolkit
Demo Video: https://www.youtube.com/watch?v=7lvVDlkkff0&ab_channel=XiaoWang
IoU Attack: Towards Temporally Coherent Black-Box Adversarial Attack for Visual Object Tracking
Paper: https://arxiv.org/abs/2103.14938
Code: https://github.com/VISION-SJTU/IoUattack
Graph Attention Tracking
Paper: https://arxiv.org/abs/2011.11204
Code: https://github.com/ohhhyeahhh/SiamGAT
Rotation Equivariant Siamese Networks for Tracking
Paper: https://arxiv.org/abs/2012.13078
Code: None
Track to Detect and Segment: An Online Multi-Object Tracker
Homepage: https://jialianwu.com/projects/TraDeS.html
Paper: None
Code: None
Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking
Paper(Oral): https://arxiv.org/abs/2103.11681
Code: https://github.com/594422814/TransformerTrack
Transformer Tracking
Paper: https://arxiv.org/abs/2103.15436
Code: https://github.com/chenxin-dlut/TransT
Tracking Pedestrian Heads in Dense Crowd
Homepage: https://project.inria.fr/crowdscience/project/dense-crowd-head-tracking/
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Sundararaman_Tracking_Pedestrian_Heads_in_Dense_Crowd_CVPR_2021_paper.html
Code1: https://github.com/Sentient07/HeadHunter
Code2: https://github.com/Sentient07/HeadHunter%E2%80%93T
Dataset: https://project.inria.fr/crowdscience/project/dense-crowd-head-tracking/
Multiple Object Tracking with Correlation Learning
Paper: https://arxiv.org/abs/2104.03541
Code: None
Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking
Paper: https://arxiv.org/abs/2012.02337
Code: None
Learning a Proposal Classifier for Multiple Object Tracking
Paper: https://arxiv.org/abs/2103.07889
Code: https://github.com/daip13/LPC_MOT.git
Track to Detect and Segment: An Online Multi-Object Tracker
Homepage: https://jialianwu.com/projects/TraDeS.html
Paper: https://arxiv.org/abs/2103.08808
Code: https://github.com/JialianW/TraDeS
======================================================================================
1. HyperSeg: Patch-wise Hypernetwork for Real-time Semantic Segmentation
作者单位: Facebook AI, 巴伊兰大学, 特拉维夫大学
Homepage: https://nirkin.com/hyperseg/
Paper: https://openaccess.thecvf.com/content/CVPR2021/papers/Nirkin_HyperSeg_Patch-Wise_Hypernetwork_for_Real-Time_Semantic_Segmentation_CVPR_2021_paper.pdf
Code: https://github.com/YuvalNirkin/hyperseg
2. Rethinking BiSeNet For Real-time Semantic Segmentation
作者单位: 美团
Paper: https://arxiv.org/abs/2104.13188
Code: https://github.com/MichaelFan01/STDC-Seg
3. Progressive Semantic Segmentation
作者单位: VinAI Research, VinUniversity, 阿肯色大学, 石溪大学
Paper: https://arxiv.org/abs/2104.03778
Code: https://github.com/VinAIResearch/MagNet
4. Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers
作者单位: 复旦大学, 牛津大学, 萨里大学, 腾讯优图, Facebook AI
Homepage: https://fudan-zvg.github.io/SETR
Paper: https://arxiv.org/abs/2012.15840
Code: https://github.com/fudan-zvg/SETR
5. Capturing Omni-Range Context for Omnidirectional Segmentation
作者单位: 卡尔斯鲁厄理工学院, 卡尔·蔡司, 华为
Paper: https://arxiv.org/abs/2103.05687
Code: None
6. Learning Statistical Texture for Semantic Segmentation
作者单位: 北航, 商汤科技
Paper: https://arxiv.org/abs/2103.04133
Code: None
7. InverseForm: A Loss Function for Structured Boundary-Aware Segmentation
作者单位: 高通AI研究院
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Borse_InverseForm_A_Loss_Function_for_Structured_Boundary-Aware_Segmentation_CVPR_2021_paper.html
Code: None
8. DCNAS: Densely Connected Neural Architecture Search for Semantic Image Segmentation
作者单位: Joyy Inc, 快手, 北航等
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Zhang_DCNAS_Densely_Connected_Neural_Architecture_Search_for_Semantic_Image_Segmentation_CVPR_2021_paper.html
Code: None
9. Railroad Is Not a Train: Saliency As Pseudo-Pixel Supervision for Weakly Supervised Semantic Segmentation
作者单位: 延世大学, 成均馆大学
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Lee_Railroad_Is_Not_a_Train_Saliency_As_Pseudo-Pixel_Supervision_for_CVPR_2021_paper.html
Code: https://github.com/halbielee/EPS
10. Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation
作者单位: 延世大学
Homepage: https://cvlab.yonsei.ac.kr/projects/BANA/
Paper: https://arxiv.org/abs/2104.00905
Code: None
11. Non-Salient Region Object Mining for Weakly Supervised Semantic Segmentation
作者单位: 南京理工大学, MBZUAI, 电子科技大学, 阿德莱德大学, 悉尼科技大学
Paper: https://arxiv.org/abs/2103.14581
Code: https://github.com/NUST-Machine-Intelligence-Laboratory/nsrom
12. Embedded Discriminative Attention Mechanism for Weakly Supervised Semantic Segmentation
作者单位: 北京理工大学, 美团
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Wu_Embedded_Discriminative_Attention_Mechanism_for_Weakly_Supervised_Semantic_Segmentation_CVPR_2021_paper.html
Code: https://github.com/allenwu97/EDAM
13. BBAM: Bounding Box Attribution Map for Weakly Supervised Semantic and Instance Segmentation
作者单位: 首尔大学
Paper: https://arxiv.org/abs/2103.08907
Code: https://github.com/jbeomlee93/BBAM
14. Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision
作者单位: 北京大学, 微软亚洲研究院
Paper: https://arxiv.org/abs/2106.01226
Code: https://github.com/charlesCXK/TorchSemiSeg
15. Semi-supervised Domain Adaptation based on Dual-level Domain Mixing for Semantic Segmentation
作者单位: 华为, 大连理工大学, 北京大学
Paper: https://arxiv.org/abs/2103.04705
Code: None
16. Semi-Supervised Semantic Segmentation With Directional Context-Aware Consistency
作者单位: 香港中文大学, 思谋科技, 牛津大学
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Lai_Semi-Supervised_Semantic_Segmentation_With_Directional_Context-Aware_Consistency_CVPR_2021_paper.html
Code: None
17. Semantic Segmentation With Generative Models: Semi-Supervised Learning and Strong Out-of-Domain Generalization
作者单位: NVIDIA, 多伦多大学, 耶鲁大学, MIT, Vector Institute
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Li_Semantic_Segmentation_With_Generative_Models_Semi-Supervised_Learning_and_Strong_Out-of-Domain_CVPR_2021_paper.html
Code: https://nv-tlabs.github.io/semanticGAN/
18. Three Ways To Improve Semantic Segmentation With Self-Supervised Depth Estimation
作者单位: ETH Zurich, 伯恩大学, 鲁汶大学
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Hoyer_Three_Ways_To_Improve_Semantic_Segmentation_With_Self-Supervised_Depth_Estimation_CVPR_2021_paper.html
Code: https://github.com/lhoyer/improving_segmentation_with_selfsupervised_depth
19. Cluster, Split, Fuse, and Update: Meta-Learning for Open Compound Domain Adaptive Semantic Segmentation
作者单位: ETH Zurich, 鲁汶大学, 电子科技大学
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Gong_Cluster_Split_Fuse_and_Update_Meta-Learning_for_Open_Compound_Domain_CVPR_2021_paper.html
Code: None
20. Source-Free Domain Adaptation for Semantic Segmentation
作者单位: 华东师范大学
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Liu_Source-Free_Domain_Adaptation_for_Semantic_Segmentation_CVPR_2021_paper.html
Code: None
21. Uncertainty Reduction for Model Adaptation in Semantic Segmentation
作者单位: Idiap Research Institute, EPFL, 日内瓦大学
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/S_Uncertainty_Reduction_for_Model_Adaptation_in_Semantic_Segmentation_CVPR_2021_paper.html
Code: https://git.io/JthPp
22. Self-Supervised Augmentation Consistency for Adapting Semantic Segmentation
作者单位: 达姆施塔特工业大学, hessian.AI
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Araslanov_Self-Supervised_Augmentation_Consistency_for_Adapting_Semantic_Segmentation_CVPR_2021_paper.html
Code: https://github.com/visinf/da-sac
23. RobustNet: Improving Domain Generalization in Urban-Scene Segmentation via Instance Selective Whitening
作者单位: LG AI研究院, KAIST等
Paper: https://arxiv.org/abs/2103.15597
Code: https://github.com/shachoi/RobustNet
24. Coarse-to-Fine Domain Adaptive Semantic Segmentation with Photometric Alignment and Category-Center Regularization
作者单位: 香港大学, 深睿医疗
Paper: https://arxiv.org/abs/2103.13041
Code: None
25. MetaCorrection: Domain-aware Meta Loss Correction for Unsupervised Domain Adaptation in Semantic Segmentation
作者单位: 香港城市大学, 百度
Paper: https://arxiv.org/abs/2103.05254
Code: https://github.com/cyang-cityu/MetaCorrection
26. Multi-Source Domain Adaptation with Collaborative Learning for Semantic Segmentation
作者单位: 华为云, 华为诺亚, 大连理工大学
Paper: https://arxiv.org/abs/2103.04717
Code: None
27. Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation
作者单位: 中国科学技术大学, 微软亚洲研究院
Paper: https://arxiv.org/abs/2101.10979
Code: https://github.com/microsoft/ProDA
28. DANNet: A One-Stage Domain Adaptation Network for Unsupervised Nighttime Semantic Segmentation
作者单位: 南卡罗来纳大学, 天远视科技
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Wu_DANNet_A_One-Stage_Domain_Adaptation_Network_for_Unsupervised_Nighttime_Semantic_CVPR_2021_paper.html
Code: https://github.com/W-zx-Y/DANNet
29. Scale-Aware Graph Neural Network for Few-Shot Semantic Segmentation
作者单位: MBZUAI, IIAI, 哈工大
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Xie_Scale-Aware_Graph_Neural_Network_for_Few-Shot_Semantic_Segmentation_CVPR_2021_paper.html
Code: None
30. Anti-Aliasing Semantic Reconstruction for Few-Shot Semantic Segmentation
作者单位: 国科大, 清华大学
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Liu_Anti-Aliasing_Semantic_Reconstruction_for_Few-Shot_Semantic_Segmentation_CVPR_2021_paper.html
Code: https://github.com/Bibkiller/ASR
31. PiCIE: Unsupervised Semantic Segmentation Using Invariance and Equivariance in Clustering
作者单位: UT-Austin, 康奈尔大学
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Cho_PiCIE_Unsupervised_Semantic_Segmentation_Using_Invariance_and_Equivariance_in_Clustering_CVPR_2021_paper.html
Code: https:// github.com/janghyuncho/PiCIE
32. VSPW: A Large-scale Dataset for Video Scene Parsing in the Wild
作者单位: 浙江大学, 百度, 悉尼科技大学
Homepage: https://www.vspwdataset.com/
Paper: https://www.vspwdataset.com/CVPR2021__miao.pdf
GitHub: https://github.com/sssdddwww2/vspw_dataset_download
33. Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations
作者单位: 帕多瓦大学
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Michieli_Continual_Semantic_Segmentation_via_Repulsion-Attraction_of_Sparse_and_Disentangled_Latent_CVPR_2021_paper.html
Code: https://lttm.dei.unipd.it/paper_data/SDR/
34. Exploit Visual Dependency Relations for Semantic Segmentation
作者单位: 伊利诺伊大学芝加哥分校
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Liu_Exploit_Visual_Dependency_Relations_for_Semantic_Segmentation_CVPR_2021_paper.html
Code: None
35. Revisiting Superpixels for Active Learning in Semantic Segmentation With Realistic Annotation Costs
作者单位: Institute for Infocomm Research, 新加坡国立大学
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Cai_Revisiting_Superpixels_for_Active_Learning_in_Semantic_Segmentation_With_Realistic_CVPR_2021_paper.html
Code: None
36. PLOP: Learning without Forgetting for Continual Semantic Segmentation
作者单位: 索邦大学, Heuritech, Datakalab, Valeo.ai
Paper: https://arxiv.org/abs/2011.11390
Code: https://github.com/arthurdouillard/CVPR2021_PLOP
37. 3D-to-2D Distillation for Indoor Scene Parsing
作者单位: 香港中文大学, 香港大学
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Liu_3D-to-2D_Distillation_for_Indoor_Scene_Parsing_CVPR_2021_paper.html
Code: None
38. Bidirectional Projection Network for Cross Dimension Scene Understanding
作者单位: 香港中文大学, 牛津大学等
Paper(Oral): https://arxiv.org/abs/2103.14326
Code: https://github.com/wbhu/BPNet
39. PointFlow: Flowing Semantics Through Points for Aerial Image Segmentation
作者单位: 北京大学, 中科院, 国科大, ETH Zurich, 商汤科技等
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Li_PointFlow_Flowing_Semantics_Through_Points_for_Aerial_Image_Segmentation_CVPR_2021_paper.html
Code: https://github.com/lxtGH/PFSegNets
======================================================================================
DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation
Paper: https://arxiv.org/abs/2011.09876
Code: https://github.com/aliyun/DCT-Mask
Incremental Few-Shot Instance Segmentation
Paper: https://arxiv.org/abs/2105.05312
Code: https://github.com/danganea/iMTFA
A^2-FPN: Attention Aggregation based Feature Pyramid Network for Instance Segmentation
Paper: https://arxiv.org/abs/2105.03186
Code: None
RefineMask: Towards High-Quality Instance Segmentation with Fine-Grained Features
Paper: https://arxiv.org/abs/2104.08569
Code: https://github.com/zhanggang001/RefineMask/
Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation
Paper: https://arxiv.org/abs/2104.05239
Code: https://github.com/tinyalpha/BPR
Multi-Scale Aligned Distillation for Low-Resolution Detection
Paper: https://jiaya.me/papers/ms_align_distill_cvpr21.pdf
Code: https://github.com/Jia-Research-Lab/MSAD
Boundary IoU: Improving Object-Centric Image Segmentation Evaluation
Homepage: https://bowenc0221.github.io/boundary-iou/
Paper: https://arxiv.org/abs/2103.16562
Code: https://github.com/bowenc0221/boundary-iou-api
Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers
Paper: https://arxiv.org/abs/2103.12340
Code: https://github.com/lkeab/BCNet
Zero-shot instance segmentation(Not Sure)
Paper: None
Code: https://github.com/CVPR2021-pape-id-1395/CVPR2021-paper-id-1395
STMask: Spatial Feature Calibration and Temporal Fusion for Effective One-stage Video Instance Segmentation
Paper: http://www4.comp.polyu.edu.hk/~cslzhang/papers.htm
Code: https://github.com/MinghanLi/STMask
End-to-End Video Instance Segmentation with Transformers
Paper(Oral): https://arxiv.org/abs/2011.14503
Code: https://github.com/Epiphqny/VisTR
======================================================================================
ViP-DeepLab: Learning Visual Perception with Depth-aware Video Panoptic Segmentation
Paper: https://arxiv.org/abs/2012.05258
Code: https://github.com/joe-siyuan-qiao/ViP-DeepLab
Dataset: https://github.com/joe-siyuan-qiao/ViP-DeepLab
Part-aware Panoptic Segmentation
Paper: https://arxiv.org/abs/2106.06351
Code: https://github.com/tue-mps/panoptic_parts
Dataset: https://github.com/tue-mps/panoptic_parts
Exemplar-Based Open-Set Panoptic Segmentation Network
Homepage: https://cv.snu.ac.kr/research/EOPSN/
Paper: https://arxiv.org/abs/2105.08336
Code: https://github.com/jd730/EOPSN
MaX-DeepLab: End-to-End Panoptic Segmentation With Mask Transformers
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Wang_MaX-DeepLab_End-to-End_Panoptic_Segmentation_With_Mask_Transformers_CVPR_2021_paper.html
Code: None
Panoptic Segmentation Forecasting
Paper: https://arxiv.org/abs/2104.03962
Code: https://github.com/nianticlabs/panoptic-forecasting
Fully Convolutional Networks for Panoptic Segmentation
Paper: https://arxiv.org/abs/2012.00720
Code: https://github.com/yanwei-li/PanopticFCN
Cross-View Regularization for Domain Adaptive Panoptic Segmentation
Paper: https://arxiv.org/abs/2103.02584
Code: None
=================================================================
1. Learning Calibrated Medical Image Segmentation via Multi-Rater Agreement Modeling
作者单位: 腾讯天衍实验室, 北京同仁医院
Paper(Best Paper Candidate): https://openaccess.thecvf.com/content/CVPR2021/html/Ji_Learning_Calibrated_Medical_Image_Segmentation_via_Multi-Rater_Agreement_Modeling_CVPR_2021_paper.html
Code: https://github.com/jiwei0921/MRNet/
2. Every Annotation Counts: Multi-Label Deep Supervision for Medical Image Segmentation
作者单位: 卡尔斯鲁厄理工学院, 卡尔·蔡司等
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Reiss_Every_Annotation_Counts_Multi-Label_Deep_Supervision_for_Medical_Image_Segmentation_CVPR_2021_paper.html
Code: None
3. FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space
作者单位: 香港中文大学, 香港理工大学
Paper: https://arxiv.org/abs/2103.06030
Code: https://github.com/liuquande/FedDG-ELCFS
4. DiNTS: Differentiable Neural Network Topology Search for 3D Medical Image Segmentation
作者单位: 约翰斯·霍普金斯大大学, NVIDIA
Paper(Oral): https://arxiv.org/abs/2103.15954
Code: None
5. DARCNN: Domain Adaptive Region-Based Convolutional Neural Network for Unsupervised Instance Segmentation in Biomedical Images
作者单位: 斯坦福大学
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Hsu_DARCNN_Domain_Adaptive_Region-Based_Convolutional_Neural_Network_for_Unsupervised_Instance_CVPR_2021_paper.html
Code: None
视频目标分割(Video-Object-Segmentation)
============================================================================================
Learning Position and Target Consistency for Memory-based Video Object Segmentation
Paper: https://arxiv.org/abs/2104.04329
Code: None
SSTVOS: Sparse Spatiotemporal Transformers for Video Object Segmentation
Paper(Oral): https://arxiv.org/abs/2101.08833
Code: https://github.com/dukebw/SSTVOS
交互式视频目标分割(Interactive-Video-Object-Segmentation)
===========================================================================================================
Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion
Homepage: https://hkchengrex.github.io/MiVOS/
Paper: https://arxiv.org/abs/2103.07941
Code: https://github.com/hkchengrex/MiVOS
Demo: https://hkchengrex.github.io/MiVOS/video.html#partb
Learning to Recommend Frame for Interactive Video Object Segmentation in the Wild
Paper: https://arxiv.org/abs/2103.10391
Code: https://github.com/svip-lab/IVOS-W
====================================================================================
Uncertainty-aware Joint Salient Object and Camouflaged Object Detection
Paper: https://arxiv.org/abs/2104.02628
Code: https://github.com/JingZhang617/Joint_COD_SOD
Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion
Paper(Oral): https://arxiv.org/abs/2103.11832
Code: https://github.com/sunpeng1996/DSA2F
伪装物体检测(Camouflaged Object Detection)
===============================================================================================
Uncertainty-aware Joint Salient Object and Camouflaged Object Detection
Paper: https://arxiv.org/abs/2104.02628
Code: https://github.com/JingZhang617/Joint_COD_SOD
协同显著性检测(Co-Salient Object Detection)
===============================================================================================
Group Collaborative Learning for Co-Salient Object Detection
Paper: https://arxiv.org/abs/2104.01108
Code: https://github.com/fanq15/GCoNet
=================================================================================
Semantic Image Matting
Paper: https://arxiv.org/abs/2104.08201
Code: https://github.com/nowsyn/SIM
Dataset: https://github.com/nowsyn/SIM
行人重识别(Person Re-identification)
==========================================================================================
Generalizable Person Re-identification with Relevance-aware Mixture of Experts
Paper: https://arxiv.org/abs/2105.09156
Code: None
Unsupervised Multi-Source Domain Adaptation for Person Re-Identification
Paper: https://arxiv.org/abs/2104.12961
Code: None
Combined Depth Space based Architecture Search For Person Re-identification
Paper: https://arxiv.org/abs/2104.04163
Code: None
==============================================================================
Anchor-Free Person Search
Paper: https://arxiv.org/abs/2103.11617
Code: https://github.com/daodaofr/AlignPS
Interpretation: 首个无需锚框(Anchor-Free)的行人搜索框架 | CVPR 2021
视频理解/行为识别(Video Understanding)
=========================================================================================
Temporal-Relational CrossTransformers for Few-Shot Action Recognition
Paper: https://arxiv.org/abs/2101.06184
Code: https://github.com/tobyperrett/trx
FrameExit: Conditional Early Exiting for Efficient Video Recognition
Paper(Oral): https://arxiv.org/abs/2104.13400
Code: None
No frame left behind: Full Video Action Recognition
Paper: https://arxiv.org/abs/2103.15395
Code: None
Learning Salient Boundary Feature for Anchor-free Temporal Action Localization
Paper: https://arxiv.org/abs/2103.13137
Code: None
Temporal Context Aggregation Network for Temporal Action Proposal Refinement
Paper: https://arxiv.org/abs/2103.13141
Code: None
Interpretation: CVPR 2021 | TCANet:最强时序动作提名修正网络
ACTION-Net: Multipath Excitation for Action Recognition
Paper: https://arxiv.org/abs/2103.07372
Code: https://github.com/V-Sense/ACTION-Net
Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning
Homepage: https://fingerrec.github.io/index_files/jinpeng/papers/CVPR2021/project_website.html
Paper: https://arxiv.org/abs/2009.05769
Code: https://github.com/FingerRec/BE
TDN: Temporal Difference Networks for Efficient Action Recognition
Paper: https://arxiv.org/abs/2012.10071
Code: https://github.com/MCG-NJU/TDN
=================================================================================
A 3D GAN for Improved Large-pose Facial Recognition
Paper: https://arxiv.org/abs/2012.10545
Code: None
MagFace: A Universal Representation for Face Recognition and Quality Assessment
Paper(Oral): https://arxiv.org/abs/2103.06627
Code: https://github.com/IrvingMeng/MagFace
WebFace260M: A Benchmark Unveiling the Power of Million-Scale Deep Face Recognition
Homepage: https://www.face-benchmark.org/
Paper: https://arxiv.org/abs/2103.04098
Dataset: https://www.face-benchmark.org/
When Age-Invariant Face Recognition Meets Face Age Synthesis: A Multi-Task Learning Framework
Paper(Oral): https://arxiv.org/abs/2103.01520
Code: https://github.com/Hzzone/MTLFace
Dataset: https://github.com/Hzzone/MTLFace
===============================================================================
HLA-Face: Joint High-Low Adaptation for Low Light Face Detection
Homepage: https://daooshee.github.io/HLA-Face-Website/
Paper: https://arxiv.org/abs/2104.01984
Code: https://github.com/daooshee/HLA-Face-Code
CRFace: Confidence Ranker for Model-Agnostic Face Detection Refinement
Paper: https://arxiv.org/abs/2103.07017
Code: None
=====================================================================================
Cross Modal Focal Loss for RGBD Face Anti-Spoofing
Paper: https://arxiv.org/abs/2103.00948
Code: None
Deepfake检测(Deepfake Detection)
=========================================================================================
Spatial-Phase Shallow Learning: Rethinking Face Forgery Detection in Frequency Domain
Paper:https://arxiv.org/abs/2103.01856
Code: None
Multi-attentional Deepfake Detection
Paper:https://arxiv.org/abs/2103.02406
Code: None
=================================================================================
Continuous Face Aging via Self-estimated Residual Age Embedding
Paper: https://arxiv.org/abs/2105.00020
Code: None
PML: Progressive Margin Loss for Long-tailed Age Classification
Paper: https://arxiv.org/abs/2103.02140
Code: None
人脸表情识别(Facial Expression Recognition)
================================================================================================
Affective Processes: stochastic modelling of temporal context for emotion and facial expression recognition
Paper: https://arxiv.org/abs/2103.13372
Code: None
====================================================================
MagDR: Mask-guided Detection and Reconstruction for Defending Deepfakes
Paper: https://arxiv.org/abs/2103.14211
Code: None
==============================================================================
Differentiable Multi-Granularity Human Representation Learning for Instance-Aware Human Semantic Parsing
Paper: https://arxiv.org/abs/2103.04570
Code: https://github.com/tfzhou/MG-HumanParsing
2D/3D人体姿态估计(2D/3D Human Pose Estimation)
===================================================================================================
ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search
Paper: ttps://arxiv.org/abs/2105.10154
Code: None
When Human Pose Estimation Meets Robustness: Adversarial Algorithms and Benchmarks
Paper: https://arxiv.org/abs/2105.06152
Code: None
Pose Recognition with Cascade Transformers
Paper: https://arxiv.org/abs/2104.06976
Code: https://github.com/mlpc-ucsd/PRTR
DCPose: Deep Dual Consecutive Network for Human Pose Estimation
Paper: https://arxiv.org/abs/2103.07254
Code: https://github.com/Pose-Group/DCPose
End-to-End Human Pose and Mesh Reconstruction with Transformers
Paper: https://arxiv.org/abs/2012.09760
Code: https://github.com/microsoft/MeshTransformer
PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation
Paper(Oral): https://arxiv.org/abs/2105.02465
Code: https://github.com/jfzhang95/PoseAug
Camera-Space Hand Mesh Recovery via Semantic Aggregation and Adaptive 2D-1D Registration
Paper: https://arxiv.org/abs/2103.02845
Code: https://github.com/SeanChenxy/HandMesh
Monocular 3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks
Paper: https://arxiv.org/abs/2104.01797
https://github.com/3dpose/3D-Multi-Person-Pose
HybrIK: A Hybrid Analytical-Neural Inverse Kinematics Solution for 3D Human Pose and Shape Estimation
Homepage: https://jeffli.site/HybrIK/
Paper: https://arxiv.org/abs/2011.14672
Code: https://github.com/Jeff-sjtu/HybrIK
动物姿态估计(Animal Pose Estimation)
=========================================================================================
From Synthetic to Real: Unsupervised Domain Adaptation for Animal Pose Estimation
Paper: https://arxiv.org/abs/2103.14843
Code: None
=======================================================================================
Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time
Homepage: https://stevenlsw.github.io/Semi-Hand-Object/
Paper: https://arxiv.org/abs/2106.05266
Code: https://github.com/stevenlsw/Semi-Hand-Object
===================================================================================
POSEFusion: Pose-guided Selective Fusion for Single-view Human Volumetric Capture
Homepage: http://www.liuyebin.com/posefusion/posefusion.html
Paper(Oral): https://arxiv.org/abs/2103.15331
Code: None
=======================================================================================
Fourier Contour Embedding for Arbitrary-Shaped Text Detection
Paper: https://arxiv.org/abs/2104.10442
Code: None
场景文本识别(Scene Text Recognition)
=========================================================================================
Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition
Paper: https://arxiv.org/abs/2103.06495
Code: https://github.com/FangShancheng/ABINet
===============================================================
Checkerboard Context Model for Efficient Learned Image Compression
Paper: https://arxiv.org/abs/2103.15306
Code: None
Slimmable Compressive Autoencoders for Practical Neural Image Compression
Paper: https://arxiv.org/abs/2103.15726
Code: None
Attention-guided Image Compression by Deep Reconstruction of Compressive Sensed Saliency Skeleton
Paper: https://arxiv.org/abs/2103.15368
Code: None
=====================================================================
Teachers Do More Than Teach: Compressing Image-to-Image Models
Paper: https://arxiv.org/abs/2103.03467
Code: https://github.com/snap-research/CAT
Dynamic Slimmable Network
Paper: https://arxiv.org/abs/2103.13258
Code: https://github.com/changlin31/DS-Net
Network Quantization with Element-wise Gradient Scaling
Paper: https://arxiv.org/abs/2104.00903
Code: None
Zero-shot Adversarial Quantization
Paper(Oral): https://arxiv.org/abs/2103.15263
Code: https://git.io/Jqc0y
Learnable Companding Quantization for Accurate Low-bit Neural Networks
Paper: https://arxiv.org/abs/2103.07156
Code: None
=======================================================================================
Distilling Knowledge via Knowledge Review
Paper: https://arxiv.org/abs/2104.09044
Code: https://github.com/Jia-Research-Lab/ReviewKD
Distilling Object Detectors via Decoupled Features
Paper: https://arxiv.org/abs/2103.14475
Code: https://github.com/ggjy/DeFeat.pytorch
=================================================================================
Image Super-Resolution with Non-Local Sparse Attention
Paper: https://openaccess.thecvf.com/content/CVPR2021/papers/Mei_Image_Super-Resolution_With_Non-Local_Sparse_Attention_CVPR_2021_paper.pdf
Code: https://github.com/HarukiYqM/Non-Local-Sparse-Attention
Towards Fast and Accurate Real-World Depth Super-Resolution: Benchmark Dataset and Baseline
Homepage: http://mepro.bjtu.edu.cn/resource.html
Paper: https://arxiv.org/abs/2104.06174
Code: None
ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic
Paper: https://arxiv.org/abs/2103.04039
Code: https://github.com/Xiangtaokong/ClassSR
AdderSR: Towards Energy Efficient Image Super-Resolution
Paper: https://arxiv.org/abs/2009.08891
Code: None
=======================================================================
Contrastive Learning for Compact Single Image Dehazing
Paper: https://arxiv.org/abs/2104.09367
Code: https://github.com/GlassyWu/AECR-Net
Temporal Modulation Network for Controllable Space-Time Video Super-Resolution
Paper: None
Code: https://github.com/CS-GangXu/TMNet
==================================================================================
Multi-Stage Progressive Image Restoration
Paper: https://arxiv.org/abs/2102.02808
Code: https://github.com/swz30/MPRNet
=================================================================================
PD-GAN: Probabilistic Diverse GAN for Image Inpainting
Paper: https://arxiv.org/abs/2105.02201
Code: https://github.com/KumapowerLIU/PD-GAN
TransFill: Reference-guided Image Inpainting by Merging Multiple Color and Spatial Transformations
Homepage: https://yzhouas.github.io/projects/TransFill/index.html
Paper: https://arxiv.org/abs/2103.15982
Code: None
==============================================================================
StyleMapGAN: Exploiting Spatial Dimensions of Latent in GAN for Real-time Image Editing
Paper: https://arxiv.org/abs/2104.14754
Code: https://github.com/naver-ai/StyleMapGAN
Demo Video: https://youtu.be/qCapNyRA_Ng
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数Python工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年Python开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Python开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新
如果你觉得这些内容对你有帮助,可以添加V获取:vip1024c (备注Python)
一个人可以走的很快,但一群人才能走的更远。如果你从事以下工作或对以下感兴趣,欢迎戳这里加入程序员的圈子,让我们一起学习成长!
AI人工智能、Android移动开发、AIGC大模型、C C#、Go语言、Java、Linux运维、云计算、MySQL、PMP、网络安全、Python爬虫、UE5、UI设计、Unity3D、Web前端开发、产品经理、车载开发、大数据、鸿蒙、计算机网络、嵌入式物联网、软件测试、数据结构与算法、音视频开发、Flutter、IOS开发、PHP开发、.NET、安卓逆向、云计算
Paper: https://arxiv.org/abs/2104.09367
Code: https://github.com/GlassyWu/AECR-Net
Temporal Modulation Network for Controllable Space-Time Video Super-Resolution
Paper: None
Code: https://github.com/CS-GangXu/TMNet
==================================================================================
Multi-Stage Progressive Image Restoration
Paper: https://arxiv.org/abs/2102.02808
Code: https://github.com/swz30/MPRNet
=================================================================================
PD-GAN: Probabilistic Diverse GAN for Image Inpainting
Paper: https://arxiv.org/abs/2105.02201
Code: https://github.com/KumapowerLIU/PD-GAN
TransFill: Reference-guided Image Inpainting by Merging Multiple Color and Spatial Transformations
Homepage: https://yzhouas.github.io/projects/TransFill/index.html
Paper: https://arxiv.org/abs/2103.15982
Code: None
==============================================================================
StyleMapGAN: Exploiting Spatial Dimensions of Latent in GAN for Real-time Image Editing
Paper: https://arxiv.org/abs/2104.14754
Code: https://github.com/naver-ai/StyleMapGAN
Demo Video: https://youtu.be/qCapNyRA_Ng
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数Python工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年Python开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
[外链图片转存中…(img-FycMlNyw-1712255698070)]
[外链图片转存中…(img-FjtJXbRx-1712255698072)]
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Python开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新
如果你觉得这些内容对你有帮助,可以添加V获取:vip1024c (备注Python)
[外链图片转存中…(img-HrwFJrx1-1712255698072)]
一个人可以走的很快,但一群人才能走的更远。如果你从事以下工作或对以下感兴趣,欢迎戳这里加入程序员的圈子,让我们一起学习成长!
AI人工智能、Android移动开发、AIGC大模型、C C#、Go语言、Java、Linux运维、云计算、MySQL、PMP、网络安全、Python爬虫、UE5、UI设计、Unity3D、Web前端开发、产品经理、车载开发、大数据、鸿蒙、计算机网络、嵌入式物联网、软件测试、数据结构与算法、音视频开发、Flutter、IOS开发、PHP开发、.NET、安卓逆向、云计算
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。