当前位置:   article > 正文

【Java中HashMap必须掌握的基本知识】_java hashmap capacity

java hashmap capacity

HashMap的底层数据结构?

JDK7中HashMap底层实现数据结构为数组+链表的形式,JDK8及其以后的版本中使用了数组+链表+红黑树实现,解决了链表太长导致的查询速度变慢的问题。

简单来说,HashMap由数组+链表组成的,数组是HashMap的主体,链表则是主要为了解决哈希冲突而存在的。HashMap通过key的HashCode经过扰动函数处理过后得到Hash值,然后通过位运算判断当前元素存放的位置,如果当前位置存在元素的话,就判断该元素与要存入的元素的hash值以及key是否相同,如果相同的话,直接覆盖,不相同就通过拉链法解决冲突。当Map中的元素总数超过Entry数组的0.75时,触发扩容操作,为了减少链表长度,元素分配更均匀。

HashMap中从获取对象的hash到散列计算规则?

JDK1.8中,是通过hashCode()的高16位异或低16位实现的:(h=k.hashCode())^(h>>>16),主要是从速度,功效和质量来考虑的,减少系统的开销,也不会造成因为高位没有参与下标的计算,从而引起的碰撞。

static final int hash(Object key){
	int h;
	return (key==null)?0:(h=key.hashCode())^(h>>>16);
}
  • 1
  • 2
  • 3
  • 4

计算规则说明:

key.hashCode();返回散列值也就是hashcode,假设随便生成的一个值。

n表示数组初始化的长度是16&(按位与运算):运算规则:相同的二进制数位上,都是1的时候,结果为1,否则为零。

^(按位异或运算):运算规则:相同的二进制数位上,数字相同,结果为0,不同为1
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

计算过程如下所示:

在这里插入图片描述

问:为什么这里把key的hashcode取出来,把它右移16位,然后取异或?
答:因为int是4个字节,也就是32位,让高16位向右移动16位后参与到位运算中,较少了hash冲突。

默认初始化大小是多少?为啥大小都是2的幂?

  1. 默认初始化大小是16,hash运算的过程其实就是对目标元素的Key进行hashcode,再对Map的容量进行取模,而JDK 的工程师为了提升取模的效率,使用位运算代替了取模运算,这就要求Map的容量一定得是2的幂。
  2. HashMap的容量为什么是2的n次幂,和这个(n - 1) & hash的计算方法有关系,符号&是按位与的计算,这是位运算,计算机能直接运算,特别高效,按位与&的计算方法是,只有当对应位置的数据都为1时,运算结果也为1,当HashMap的容量是2的n次幂时,这样与添加元素的hash值进行位运算时,能够充分的散列,使得添加的元素均匀分布在HashMap的每个位置上,减少hash碰撞。

HashMap的主要参数都有哪些?

  1. DEFAULT_INITIAL_CAPACITY:默认的初始化容量,1<<4位运算的结果是16,也就是默认的初始化容量为16。当然如果对要存储的数据有一个估计值,最好在初始化的时候显示的指定容量大小,减少扩容时的数据搬移等带来的效率消耗。同时,容量大小需要是2的整数倍。

  2. MAXIMUM_CAPACITY:容量的最大值,1 << 30位,2的30次幂。

  3. DEFAULT_LOAD_FACTOR:默认的加载因子,0.75 设计者认为这个数值是基于时间和空间消耗上最好的数值。这个值和容量的乘积是一个很重要的数值,也就是阈值,当达到这个值时候会产生扩容,扩容的大小大约为原来的二倍。

  4. TREEIFY_THRESHOLD:因为jdk8以后,HashMap底层的存储结构改为了数组+链表+红黑树的存储结构(之前是数组+链表),刚开始存储元素产生碰撞时会在碰撞的数组后面挂上一个链表,当链表长度大于这个参数时,链表就可能会转化为红黑树,为什么可能后面还有一个参数,需要他们两个都满足的时候才会转化。

  5. UNTREEIFY_THRESHOLD:介绍上面的参数时,我们知道当长度过大时可能会产生从链表到红黑树的转化,但是,元素不仅仅只能添加还可以删除,或者另一种情况,扩容后该数组槽位置上的元素数据不是很多了,还使用红黑树的结构就会很浪费,所以这时就可以把红黑树结构变回链表结构,什么时候变,就是元素数量等于这个值也就是6的时候变回来(元素数量指的是一个数组槽内的数量,不是HashMap中所有元素的数量)。

  6. MIN_TREEIFY_CAPACITY:链表树化的一个标准,前面说过当数组槽内的元素数量大于8时可能会转化为红黑树,之所以说是可能就是因为这个值,当数组的长度小于这个值的时候,会先去进行扩容,扩容之后就有很大的可能让数组槽内的数据可以更分散一些了,也就不用转化数组槽后的存储结构了。当然,长度大于这个值并且槽内数据大于8时,那就转化为红黑树吧。

哈希冲突基本概念以及HashMap解决冲突的方法

  1. 哈希冲突基本概念:如果两个不同对象的hashCode相同,这种现象称为hash冲突。
  2. HashMap解决冲突的方法:
  • 开放定址法:开放定址法就是一旦发生了冲突,就去寻找下一个空的散列地址,只要散列表足够大,空的散列地址总能找到,并将记录存入。
  • 链地址法:链地址法将哈希表的每个单元作为链表的头结点,所有哈希地址为i的元素构成一个同义词链表。即发生冲突时就把该关键字链在以该单元为头结点的链表的尾部。
  • 再哈希法:当哈希地址发生冲突用其他的函数计算另一个哈希函数地址,直到冲突不再产生为止。
  • 建立公共溢出区:将哈希表分为基本表和溢出表两部分,发生冲突的元素都放入溢出表中。

为啥我们重写equals方法的时候需要重写hashCode方法呢?

  1. HashMap中value的查找是通过 key 的 hashcode 来查找,所以对自己的对象必须重写 hashcode 方法通过 hashcode 找到对象地址后会用 equals 比较你传入的对象和 hashmap 中的 key 对象是否相同,因此还要重写 equals。

HashMap什么时候进行扩容?它是怎么扩容的呢?

  1. HashMap进行扩容取决于以下两个元素:
    Capacity:HashMap当前长度。
    LoadFactor:负载因子,默认值0.75f。
    当Map中的元素个数(包括数组,链表和红黑树中)超过了16*0.75=12之后开始扩容。
  2. 具体怎么进行扩容呢?将会创建原来HashMap大小的两倍的bucket数组,来重新调整map的大小,并将原来的对象放入新的bucket数组中。这个过程叫作rehashing ,因为它将会调用hash方法找到新的bucket位置。

JDK1.7扩容的时候为什么要重新Hash呢,为什么不直接复制过去?

是因为长度扩大以后,Hash的规则也随之改变。比如原来长度(Length)是8,位运算出来的值是2 ,新的长度是16,位运算出来的值明显不一样了。

HashMap和Hashtable的区别是什么?

HashMap是线程不安全的,是允许key和value的值为null的,速度更慢,效率更快
Hashtable是线程安全的,是不允许key和value的值为null的,速度更快,效率更慢

  1. HashMap是线程不安全的,HashTable是线程安全的;

  2. 由于线程安全,所以HashTable的效率比不上HashMap;

  3. HashMap最多只允许一条记录的键为null,允许多条记录的值为null,而HashTable不允许;

  4. HashMap默认初始化数组的大小为16,HashTable为11,前者扩容时,扩大两倍,后者扩大两倍+1;

  5. HashMap需要重新计算hash值,而HashTable直接使用对象的hashCode;

什么是Java集合中的快速失败(fast-fail)机制?

  1. 快速失败的基本概念:快速失败是Java集合的一种错误检测机制,当多个线程对集合进行结构上的改变的操作时,有可能会产生fail-fast。
  2. 快速失败的案例?
    举个例子:假设存在两个线程(线程1、线程2),线程1通过Iterator在遍历集合A中的元素,在某个时候线程2修改了集合A的结构(是结构上面的修改,而不是简单的修改集合元素的内容),那么这个时候程序就可能会抛出 ConcurrentModificationException异常,从而产生fast-fail快速失败。
  3. 快速失败机制底层是怎么实现的呢?
    迭代器在遍历时直接访问集合中的内容,并且在遍历过程中使用一个 modCount 变量。集合在被遍历期间如果内容发生变化,就会改变modCount的值。当迭代器使用hashNext()/next()遍历下一个元素之前,都会检测modCount变量是否为expectedModCount值,是的话就返回遍历;否则抛出异常,终止遍历。

为什么String, Interger类适合作为键?

  1. 因为String是不可变的,也是final的,而且已经重写了equals()和hashCode()方法了。不可变性是必要的,因为为了要计算hashCode(),就要防止键值改变,如果键值在放入时和获取时返回不同的hashcode的话,那么就不能从HashMap中找到你想要的对象。不可变性还有其他的优点如线程安全。
  2. String类型的变量存储到了字符串常量池中,会被缓存到常量池中,下次直接取出来即可;

HashMap的工作原理?

HashMap底层是hash数组和单向链表实现,数组中的每个元素都是链表,由Node内部类(实现Map.Entry<K,V>接口)实现,HashMap通过put&get方法存储和获取。
存储对象时,将K/V键值传给put()方法:

  1. 调用hash(K)方法计算K的hash值,然后结合数组长度,计算得数组下标;

  2. 调整数组大小(当容器中的元素个数大于capacity*loadfactor时,容器会进行扩容resize为2n);

  3. 第三个步骤中包含三个小的步骤:

  • 如果K的hash值在HashMap中不存在,则执行插入,若存在,则发生碰撞;

  • 如果K的hash值在HashMap中存在,且它们两者equals返回true,则更新键值对;

  • 如果K的hash值在HashMap中存在,且它们两者equals返回false,则插入链表的尾部(尾插法)或者红黑树中(树的添加方式)。

(JDK1.7之前使用头插法、JDK1.8使用尾插法)
(注意:当碰撞导致链表大于TREEIFY_THRESHOLD=8时,就把链表转换成红黑树)

HashMap的table的容量如何确定?loadFactor是什么?该容量如何变化?这种变化会带来什么问题?

  1. table数组大小是由capacity这个参数确定的,默认是16,也可以构造时传入,最大限制是1<<30;

  2. loadFactor是装载因子,主要目的是用来确认table数组是否需要动态扩展,默认值是0.75,比如table数组大小为16,装载因子为0.75时,threshold就是12,当table的实际大小超过12时,table就需要动态扩容;

  3. 扩容时,调用resize()方法,将table长度变为原来的两倍(注意是table长度,而不是threshold)

  4. 如果数据很大的情况下,扩展时将会带来性能的损失,在性能要求很高的地方,这种损失很可能很致命。

HashMap中put方法的过程?

  1. HashMap中put方法的过程步骤如下所示:
  • 调用哈希函数获取Key对应的hash值,再计算其数组下标;
  • 如果没有出现哈希冲突,则直接放入数组;如果出现哈希冲突,则以链表的方式放在链表后面;
  • 如果链表长度超过阀值(TREEIFYTHRESHOLD==8),就把链表转成红黑树,链表长度低于6,就把红黑树转回链表;
  • 如果结点的key已经存在,则替换其value即可;
  • 如果集合中的键值对大于12,调用resize方法进行数组扩容。
  1. HashMap中put方法的过程图解如图所示:
    在这里插入图片描述

HashMap数组扩容的过程?

  1. 数组扩容的算法
    创建一个新的数组,其容量为旧数组的两倍,并重新计算旧数组中结点的存储位置。结点在新数组中的位置只有两种,原下标位置或原下标+旧数组的大小。

  2. 什么时候才需要扩容
    当HashMap中的元素个数超过数组大小(数组长度)*loadFactor(负载因子)时,就会进行数组扩容,loadFactor的默认值(DEFAULT_LOAD_FACTOR)是0.75,这是一个折中的取值。也就是说,默认情况下,数组大小为16,那么当HashMap中的元素个数超过16×0.75=12(这个值就是阈值或者边界值threshold值)的时候,就把数组的大小扩展为2×16=32,即扩大一倍,然后重新计算每个元素在数组中的位置,而这是一个非常耗性能的操作,所以如果我们已经预知HashMap中元素的个数,那么预知元素的个数能够有效的提高HashMap的性能。

  3. 链表什么时候转换为红黑树
    当HashMap中的其中一个链表的对象个数如果达到了8个,此时如果数组长度没有达到64,那么HashMap会先扩容解决,如果已经达到了64,那么这个链表会变成红黑树,结点类型由Node变成TreeNode类型。当然,如果映射关系被移除后,下次执行resize方法时判断树的结点个数低于6,也会再把树转换为链表。

  4. HashMap的扩容是什么
    进行扩容,会伴随着一次重新hash分配,并且会遍历hash表中所有的元素,是非常耗时的。在编写程序中,要尽量避免resize。
    HashMap在进行扩容时,使用的rehash方式非常巧妙,因为每次扩容都是翻倍,与原来计算的 (n-1)&hash的结果相比,只是多了一个bit位,所以结点要么就在原来的位置,要么就被分配到”原位置+旧容量”这个位置。

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

拉链法导致的链表过深问题为什么不用二叉查找树代替,而选择红黑树?为什么不一直使用红黑树?

  1. 选择红黑树是为了解决二叉查找树的缺陷,二叉查找树在特殊情况下会变成一条线性结构(这就跟原来使用链表结构一样了,造成很深的问题),遍历查找会非常慢。而红黑树在插入新数据后可能需要通过左旋,右旋、变色这些操作来保持平衡,引入红黑树就是为了查找数据快,解决链表查询深度的问题,我们知道红黑树属于平衡二叉树,但是为了保持”平衡”是需要付出代价的,但是该代价所损耗的资源要比遍历线性链表要少,所以当长度大于8的时候,会使用红黑树,如果链表长度很短的话,根本不需要引入红黑树,引入反而会慢。
  2. 查找红黑树,由于之前添加的已经保证这个树是有序的了,所以查找的时候就是二分查找,效率更加高效。
  3. 如果为树结构,则在树中通过key.equals(key)进行查找,时间复杂度是O(logn)
    如果是链表结构,则在链表中通过key.equals(key)进行查找,时间复杂度是O(n)

说说你对红黑树的见解?

  1. 每个节点非红即黑
  2. 根节点总是黑色的
  3. 如果节点是红色的,则它的子节点必须是黑色的(反之不一定)
  4. 每个叶子节点都是黑色的空节点(NIL节点)
  5. 从根节点到叶节点或空子节点的每条路径,必须包含相同数目的黑色节点(即相同的黑色高度)

JDK8中对HashMap做了哪些改变?

  1. 在java1.8中,如果链表的长度超过了8,那么链表将转换为红黑树。(桶的数量必须大于64,小于64的时候只会扩容)

  2. 发生hash碰撞时,java1.7会在链表的头部插入,而java1.8会在链表的尾部插入

  3. 在java1.8中,Entry被Node替代

jdk1.8中做了哪些优化优化?

  1. 数组+链表改成了数组+链表或红黑树
  2. 链表的插入方式从头插法改成了尾插法
  3. 扩容的时候1.7需要对原数组中的元素进行重新hash定位在新数组的位置,1.8采用更简单的判断逻辑,位置不变或索引+旧容量大小;
  4. 在插入时,1.7先判断是否需要扩容,再插入,1.8先进行插入,插入完成再判断是否需要扩容;

为什么HashMap的底层数组长度为何总是2的n次方

  1. 第一:当length为2的N次方的时候,h & (length-1) = h % length
    为什么&效率更高呢?因为位运算直接对内存数据进行操作,不需要转成十进制,所以位运算要比取模运算的效率更高

  2. 第二:当length为2的N次方的时候,数据分布均匀,减少冲突

HashMap的不安全体现在哪里?

hashMap是线程不安全的,其主要体现:

  1. 在jdk1.7中,在多线程环境下,扩容时会造成环形链或数据丢失。
    现在我们要在容量为2的容器里面用不同线程插入A,B,C,假如我们在resize之前打个短点,那意味着数据都插入了但是还没resize那扩容前可能是这样的。
    我们可以看到链表的指向A->B->C
    Tip:A的下一个指针是指向B的
    在这里插入图片描述
    因为resize的赋值方式,也就是使用了单链表的头插入方式,同一位置上新元素总会被放在链表的头部位置,在旧数组中同一条Entry链上的元素,通过重新计算索引位置后,有可能被放到了新数组的不同位置上。
    就可能出现下面的情况,大家发现问题没有?
    B的下一个指针指向了A
    一旦几个线程都调整完成,就可能出现环形链表
    在这里插入图片描述
    如果这个时候去取值,悲剧就出现了——Infinite Loop。

  2. 在jdk1.8中,在多线程环境下,会发生数据覆盖的情况。
    jdk1.8中HashMap中put操作的主函数,如果没有hash碰撞则会直接插入元素。如果线程A和线程B同时进行put操作,刚好这两条不同的数据hash值一样,并且该位置数据为null,所以这线程A、B都会进入接下来的逻辑中。假设一种情况,线程A进入后还未进行数据插入时挂起,而线程B正常执行,从而正常插入数据,然后线程A获取CPU时间片,此时线程A不用再进行hash判断了,问题出现:线程A会把线程B插入的数据给覆盖,发生线程不安全。

HashMap中容量的初始化

当我们使用HashMap(int initialCapacity)来初始化容量的时候,jdk会默认帮我们计算一个相对合理的值当做初始容量。那么,是不是我们只需要把已知的HashMap中即将存放的元素个数直接传给initialCapacity就可以了呢?
关于这个值的设置,在《阿里巴巴Java开发手册》有以下建议:

initialCapacity=(需要存储的元素个数/负载因子)+1,注意负载因子默认是0.75

也就是说,如果我们设置的默认值是7,经过Jdk处理之后,会被设置成8,但是,这个HashMap在元素个数达到 8*0.75 = 6的时候就会进行一次扩容,这明显是我们不希望见到的。我们应该尽量减少扩容。原因也已经分析过。
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

如果我们通过initialCapacity/ 0.75F + 1.0F计算,7/0.75 + 1 = 10 ,10经过Jdk处理之后,会被设置成16,这就大大的减少了扩容的几率。

当HashMap内部维护的哈希表的容量达到75%时(默认情况下),会触发rehash,而rehash的过程是比较耗费时间的。所以初始化容量要设置成initialCapacity/0.75 + 1的话,可以有效的减少冲突也可以减小误差。

所以,我可以认为,当我们明确知道HashMap中元素的个数的时候,把默认容量设置成initialCapacity/ 0.75F + 1.0F是一个在性能上相对好的选择,但是,同时也会牺牲些内存。

我们想要在代码中创建一个HashMap的时候,如果我们已知这个Map中即将存放的元素个数,给HashMap设置初始容量可以在一定程度上提升效率。

但是,JDK并不会直接拿用户传进来的数字当做默认容量,而是会进行一番运算,最终得到一个2的幂。原因也已经分析过。

所以为了最大程度的避免扩容带来的性能消耗,我们建议可以把默认容量的数字设置成initialCapacity/ 0.75F + 1.0F。

HashMap是怎么解决哈希冲突的?

答:在解决这个问题之前,我们首先需要知道什么是哈希冲突,而在了解哈希冲突之前我们还要知道什么是哈希才行;

什么是哈希?

Hash,一般翻译为“散列”,也有直接音译为“哈希”的,这就是把任意长度的输入通过散列算法,变换成固定长度的输出,该输出就是散列值(哈希值);这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,所以不可能从散列值来唯一的确定输入值。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。

所有散列函数都有如下一个基本特性**:根据同一散列函数计算出的散列值如果不同,那么输入值肯定也不同。但是,根据同一散列函数计算出的散列值如果相同,输入值不一定相同**。

什么是哈希冲突?

当两个不同的输入值,根据同一散列函数计算出相同的散列值的现象,我们就把它叫做碰撞(哈希碰撞)。

HashMap的数据结构

在Java中,保存数据有两种比较简单的数据结构:数组和链表。数组的特点是:寻址容易,插入和删除困难;链表的特点是:寻址困难,但插入和删除容易;所以我们将数组和链表结合在一起,发挥两者各自的优势,使用一种叫做链地址法的方式可以解决哈希冲突:

在这里插入图片描述

这样我们就可以将拥有相同哈希值的对象组织成一个链表放在hash值所对应的bucket下,但相比于hashCode返回的int类型,我们HashMap初始的容量大小DEFAULT_INITIAL_CAPACITY = 1 << 4(即2的四次方16)要远小于int类型的范围,所以我们如果只是单纯的用hashCode取余来获取对应的bucket这将会大大增加哈希碰撞的概率,并且最坏情况下还会将HashMap变成一个单链表,所以我们还需要对hashCode作一定的优化

hash()函数

上面提到的问题,主要是因为如果使用hashCode取余,那么相当于参与运算的只有hashCode的低位,高位是没有起到任何作用的,所以我们的思路就是让hashCode取值出的高位也参与运算,进一步降低hash碰撞的概率,使得数据分布更平均,我们把这样的操作称为扰动,在JDK 1.8中的hash()函数如下:

static final int hash(Object key) {
    int h;
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);// 与自己右移16位进行异或运算(高低位异或)
}
  • 1
  • 2
  • 3
  • 4

这比在JDK 1.7中,更为简洁,相比在1.7中的4次位运算,5次异或运算(9次扰动),在1.8中,只进行了1次位运算和1次异或运算(2次扰动);

通过上面的链地址法(使用散列表)和扰动函数我们成功让我们的数据分布更平均,哈希碰撞减少,但是当我们的HashMap中存在大量数据时,加入我们某个bucket下对应的链表有n个元素,那么遍历时间复杂度就为O(n),为了针对这个问题,JDK1.8在HashMap中新增了红黑树的数据结构,进一步使得遍历复杂度降低至O(logn);

总结

简单总结一下HashMap是使用了哪些方法来有效解决哈希冲突的:

  1. 使用链地址法(使用散列表)来链接拥有相同hash值的数据;
  2. 使用2次扰动函数(hash函数)来降低哈希冲突的概率,使得数据分布更平均;
  3. 引入红黑树进一步降低遍历的时间复杂度,使得遍历更快;
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/从前慢现在也慢/article/detail/564495
推荐阅读
相关标签
  

闽ICP备14008679号