赞
踩
操作ES只需要发送请求就可以,相对来说整合起来比较简单
spring-data-elasticsearch:transport-api.jar;
springboot 版本不同, transport-api.jar 不同,不能适配es 版本
7.x 已经不建议使用,8 以后就要废弃
1.JestClient:非官方,更新慢
2.RestTemplate:模拟发HTTP 请求,ES 很多操作需要自己封装,麻烦
3.HttpClient:同上
4.Elasticsearch-Rest-Client:官方RestClient,封装了ES 操作,API 层次分明,上手简单(最终选择)
版本要跟自己的ES版本对应
<dependency>
<groupId>org.elasticsearch.client</groupId>
<artifactId>elasticsearch-rest-high-level-client</artifactId>
<version>7.4.2</version>
</dependency>
导入后注意依赖版本,因为是springboot项目会规定ES版
需要规定ES版本
<properties>
<java.version>1.8</java.version>
<elasticsearch.version>7.4.2</elasticsearch.version>
</properties>
使用spring data elasticsearch 也需要配置连接信息等
编写配置给容器中注入一个RestHighLevelClient 对象
@Configuration public class XmallElasticSearchConfig { //在请求ES时携带请求头信息 public static final RequestOptions COMMON_OPTIONS; static { RequestOptions.Builder builder = RequestOptions.DEFAULT.toBuilder(); // builder.addHeader("Authorization", "Bearer " + TOKEN); // builder.setHttpAsyncResponseConsumerFactory( // new HttpAsyncResponseConsumerFactory // .HeapBufferedResponseConsumerFactory(30 * 1024 * 1024 * 1024)); COMMON_OPTIONS = builder.build(); } @Bean public RestHighLevelClient esRestClient(){ //如果是多个ES 可以配置多个Host RestClientBuilder builder = RestClient.builder(new HttpHost("101.43.122.84", 9200, "http")); return new RestHighLevelClient(builder); } }
@RunWith(SpringRunner.class) @SpringBootTest public class XmallSearchApplicationTests { //注入ES对象 @Autowired RestHighLevelClient client; /** * 测试往ES中存储数据 */ @Test public void indexData() throws IOException { IndexRequest indexRequest = new IndexRequest("users"); indexRequest.id("1"); //数据的id /* * 要保存的数据 */ user user = new user(); user.setUsername("辛鹏"); user.setAge(18); user.setGender("男"); String s = JSON.toJSONString(user); indexRequest.source(s, XContentType.JSON); //同步的方式保存数据 IndexResponse index = client.index(indexRequest, XmallElasticSearchConfig.COMMON_OPTIONS); //响应数据 System.out.println(index); } @Data class user{ private String username; private String gender; private Integer age; } @Test public void contextLoads() { System.out.println(client); } }
ES区别于关系型数据库的地方,宽表设计,不能去考虑数 据库范式。
index: 默认true,如果为false,表示该字段不会被索引,但是检索结果里面有,但字段本身不能 当做检索条件。**
doc_values:
默认true,设置为false,表示不可以做排序、聚合以及脚本操作,这样更节省磁盘空间。
还可以通过设定doc_values 为true,index 为false 来让字段不能被搜索但可以用于排序、聚
合以及脚本操作:**
PUT product { "mappings": { "properties": { "skuId": { "type": "long" }, "spuId": { "type": "keyword" //精确匹配 }, "skuTitle": { "type": "text", "analyzer": "ik_smart" }, "skuPrice": { "type": "keyword" }, "skuImg": { "type": "keyword", "index": false, //不被检索 "doc_values": false }, "saleCount": { "type": "long" }, "hasStock": { "type": "boolean" }, "hotScore": { "type": "long" }, "brandId": { "type": "long" }, "catalogId": { "type": "long" }, "brandName": { "type": "keyword", "index": false, "doc_values": false }, "brandImg": { "type": "keyword", "index": false, "doc_values": false }, "catalogName": { "type": "keyword", "index": false, "doc_values": false }, "attrs": { "type": "nested", "properties": { "attrId": { "type": "long" }, "attrName": { "type": "keyword", "index": false, "doc_values": false }, "attrValue": { "type": "keyword" } } } } } }
如果存储的是数组的话,此数据会被扁平化处理,检索会出现误差,使用nested类型可以使用嵌入式数据,让数据不被扁平化处理
检索条件分析
完整查询条件
完整查询条件可能会有很多
keyword=小米
&sort=saleCount_desc/asc
&hasStock=0/1
&skuPrice=400_1900
&brandId=1
&catalog3Id=1
&attrs=1_3G:4G:5G
&attrs=2_骁龙845
&attrs=4_高清屏
可以将所有的查询条件封装成一个VO对象
package cn.cloud.xmall.search.vo; import lombok.Data; import java.util.List; /** * @Description: 封装页面所有可能传递过来的查询条件,检索关键字,三级分类Id... * @author: Freedom * @QQ: 1556507698 * @date:2022/3/17 21:18 */ @Data public class SearchParam { /** * 页面传递过来的全文匹配关键字 */ private String keyword; /** * 品牌id,可以多选 */ private List<Long> brandId; /** * 三级分类id */ private Long catalog3Id; /** * 排序条件:sort=price/salecount/hotscore_desc/asc */ private String sort; /** * 是否显示有货 */ private Integer hasStock; /** * 价格区间查询 */ private String skuPrice; /** * 按照属性进行筛选 */ private List<String> attrs; /** * 页码 */ private Integer pageNum = 1; /** * 原生的所有查询条件 */ private String _queryString; }
package com.xunqi.gulimall.search.service.impl; import com.alibaba.fastjson.JSON; import com.alibaba.fastjson.TypeReference; import com.xunqi.common.es.SkuEsModel; import com.xunqi.common.utils.R; import com.xunqi.gulimall.search.config.GulimallElasticSearchConfig; import com.xunqi.gulimall.search.constant.EsConstant; import com.xunqi.gulimall.search.service.MallSearchService; import com.xunqi.gulimall.search.vo.AttrResponseVo; import com.xunqi.gulimall.search.vo.SearchParam; import com.xunqi.gulimall.search.vo.SearchResult; import com.xunqi.gulimall.search.feign.ProductFeignService; import lombok.extern.slf4j.Slf4j; import org.apache.lucene.search.join.ScoreMode; import org.elasticsearch.action.search.SearchRequest; import org.elasticsearch.action.search.SearchResponse; import org.elasticsearch.client.RestHighLevelClient; import org.elasticsearch.index.query.BoolQueryBuilder; import org.elasticsearch.index.query.NestedQueryBuilder; import org.elasticsearch.index.query.QueryBuilders; import org.elasticsearch.index.query.RangeQueryBuilder; import org.elasticsearch.search.SearchHit; import org.elasticsearch.search.SearchHits; import org.elasticsearch.search.aggregations.AggregationBuilders; import org.elasticsearch.search.aggregations.bucket.nested.NestedAggregationBuilder; import org.elasticsearch.search.aggregations.bucket.nested.ParsedNested; import org.elasticsearch.search.aggregations.bucket.terms.ParsedLongTerms; import org.elasticsearch.search.aggregations.bucket.terms.ParsedStringTerms; import org.elasticsearch.search.aggregations.bucket.terms.Terms; import org.elasticsearch.search.aggregations.bucket.terms.TermsAggregationBuilder; import org.elasticsearch.search.builder.SearchSourceBuilder; import org.elasticsearch.search.fetch.subphase.highlight.HighlightBuilder; import org.elasticsearch.search.fetch.subphase.highlight.HighlightField; import org.elasticsearch.search.sort.SortOrder; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.stereotype.Service; import org.springframework.util.StringUtils; import javax.annotation.Resource; import java.io.IOException; import java.io.UnsupportedEncodingException; import java.net.URLEncoder; import java.util.ArrayList; import java.util.List; import java.util.stream.Collectors; /** * @Description: * @Created: with IntelliJ IDEA. * @author: 夏沫止水 * @createTime: 2020-06-13 14:19 **/ @Slf4j @Service public class MallSearchServiceImpl implements MallSearchService { @Autowired private RestHighLevelClient esRestClient; @Resource private ProductFeignService productFeignService; @Override public SearchResult search(SearchParam param) { //1、动态构建出查询需要的DSL语句 SearchResult result = null; //1、准备检索请求 SearchRequest searchRequest = buildSearchRequest(param); try { //2、执行检索请求 SearchResponse response = esRestClient.search(searchRequest, GulimallElasticSearchConfig.COMMON_OPTIONS); //3、分析响应数据,封装成我们需要的格式 result = buildSearchResult(response,param); } catch (IOException e) { e.printStackTrace(); } return result; } /** * 构建结果数据 * 模糊匹配,过滤(按照属性、分类、品牌,价格区间,库存),完成排序、分页、高亮,聚合分析功能 * @param response * @return */ private SearchResult buildSearchResult(SearchResponse response,SearchParam param) { SearchResult result = new SearchResult(); //1、返回的所有查询到的商品 SearchHits hits = response.getHits(); List<SkuEsModel> esModels = new ArrayList<>(); //遍历所有商品信息 if (hits.getHits() != null && hits.getHits().length > 0) { for (SearchHit hit : hits.getHits()) { String sourceAsString = hit.getSourceAsString(); SkuEsModel esModel = JSON.parseObject(sourceAsString, SkuEsModel.class); //判断是否按关键字检索,若是就显示高亮,否则不显示 if (!StringUtils.isEmpty(param.getKeyword())) { //拿到高亮信息显示标题 HighlightField skuTitle = hit.getHighlightFields().get("skuTitle"); String skuTitleValue = skuTitle.getFragments()[0].string(); esModel.setSkuTitle(skuTitleValue); } esModels.add(esModel); } } result.setProduct(esModels); //2、当前商品涉及到的所有属性信息 List<SearchResult.AttrVo> attrVos = new ArrayList<>(); //获取属性信息的聚合 ParsedNested attrsAgg = response.getAggregations().get("attr_agg"); ParsedLongTerms attrIdAgg = attrsAgg.getAggregations().get("attr_id_agg"); for (Terms.Bucket bucket : attrIdAgg.getBuckets()) { SearchResult.AttrVo attrVo = new SearchResult.AttrVo(); //1、得到属性的id long attrId = bucket.getKeyAsNumber().longValue(); attrVo.setAttrId(attrId); //2、得到属性的名字 ParsedStringTerms attrNameAgg = bucket.getAggregations().get("attr_name_agg"); String attrName = attrNameAgg.getBuckets().get(0).getKeyAsString(); attrVo.setAttrName(attrName); //3、得到属性的所有值 ParsedStringTerms attrValueAgg = bucket.getAggregations().get("attr_value_agg"); List<String> attrValues = attrValueAgg.getBuckets().stream().map(item -> item.getKeyAsString()).collect(Collectors.toList()); attrVo.setAttrValue(attrValues); attrVos.add(attrVo); } result.setAttrs(attrVos); //3、当前商品涉及到的所有品牌信息 List<SearchResult.BrandVo> brandVos = new ArrayList<>(); //获取到品牌的聚合 ParsedLongTerms brandAgg = response.getAggregations().get("brand_agg"); for (Terms.Bucket bucket : brandAgg.getBuckets()) { SearchResult.BrandVo brandVo = new SearchResult.BrandVo(); //1、得到品牌的id long brandId = bucket.getKeyAsNumber().longValue(); brandVo.setBrandId(brandId); //2、得到品牌的名字 ParsedStringTerms brandNameAgg = bucket.getAggregations().get("brand_name_agg"); String brandName = brandNameAgg.getBuckets().get(0).getKeyAsString(); brandVo.setBrandName(brandName); //3、得到品牌的图片 ParsedStringTerms brandImgAgg = bucket.getAggregations().get("brand_img_agg"); String brandImg = brandImgAgg.getBuckets().get(0).getKeyAsString(); brandVo.setBrandImg(brandImg); brandVos.add(brandVo); } result.setBrands(brandVos); //4、当前商品涉及到的所有分类信息 //获取到分类的聚合 List<SearchResult.CatalogVo> catalogVos = new ArrayList<>(); ParsedLongTerms catalogAgg = response.getAggregations().get("catalog_agg"); for (Terms.Bucket bucket : catalogAgg.getBuckets()) { SearchResult.CatalogVo catalogVo = new SearchResult.CatalogVo(); //得到分类id String keyAsString = bucket.getKeyAsString(); catalogVo.setCatalogId(Long.parseLong(keyAsString)); //得到分类名 ParsedStringTerms catalogNameAgg = bucket.getAggregations().get("catalog_name_agg"); String catalogName = catalogNameAgg.getBuckets().get(0).getKeyAsString(); catalogVo.setCatalogName(catalogName); catalogVos.add(catalogVo); } result.setCatalogs(catalogVos); //===============以上可以从聚合信息中获取====================// //5、分页信息-页码 result.setPageNum(param.getPageNum()); //5、1分页信息、总记录数 long total = hits.getTotalHits().value; result.setTotal(total); //5、2分页信息-总页码-计算 int totalPages = (int)total % EsConstant.PRODUCT_PAGESIZE == 0 ? (int)total / EsConstant.PRODUCT_PAGESIZE : ((int)total / EsConstant.PRODUCT_PAGESIZE + 1); result.setTotalPages(totalPages); List<Integer> pageNavs = new ArrayList<>(); for (int i = 1; i <= totalPages; i++) { pageNavs.add(i); } result.setPageNavs(pageNavs); //6、构建面包屑导航 if (param.getAttrs() != null && param.getAttrs().size() > 0) { List<SearchResult.NavVo> collect = param.getAttrs().stream().map(attr -> { //1、分析每一个attrs传过来的参数值 SearchResult.NavVo navVo = new SearchResult.NavVo(); String[] s = attr.split("_"); navVo.setNavValue(s[1]); R r = productFeignService.attrInfo(Long.parseLong(s[0])); if (r.getCode() == 0) { AttrResponseVo data = r.getData("attr", new TypeReference<AttrResponseVo>() { }); navVo.setNavName(data.getAttrName()); } else { navVo.setNavName(s[0]); } //2、取消了这个面包屑以后,我们要跳转到哪个地方,将请求的地址url里面的当前置空 //拿到所有的查询条件,去掉当前 String encode = null; try { encode = URLEncoder.encode(attr,"UTF-8"); encode.replace("+","%20"); //浏览器对空格的编码和Java不一样,差异化处理 } catch (UnsupportedEncodingException e) { e.printStackTrace(); } String replace = param.get_queryString().replace("&attrs=" + attr, ""); navVo.setLink("http://search.gulimall.com/list.html?" + replace); return navVo; }).collect(Collectors.toList()); result.setNavs(collect); } return result; } /** * 准备检索请求 * 模糊匹配,过滤(按照属性,分类,品牌,价格区间,库存),排序,分页,高亮,聚合分析 * @return */ private SearchRequest buildSearchRequest(SearchParam param) { SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); /** * 模糊匹配,过滤(按照属性,分类,品牌,价格区间,库存) */ //1. 构建bool-query BoolQueryBuilder boolQueryBuilder=new BoolQueryBuilder(); //1.1 bool-must if(!StringUtils.isEmpty(param.getKeyword())){ boolQueryBuilder.must(QueryBuilders.matchQuery("skuTitle",param.getKeyword())); } //1.2 bool-fiter //1.2.1 catelogId if(null != param.getCatalog3Id()){ boolQueryBuilder.filter(QueryBuilders.termQuery("catalogId",param.getCatalog3Id())); } //1.2.2 brandId if(null != param.getBrandId() && param.getBrandId().size() >0){ boolQueryBuilder.filter(QueryBuilders.termsQuery("brandId",param.getBrandId())); } //1.2.3 attrs if(param.getAttrs() != null && param.getAttrs().size() > 0){ param.getAttrs().forEach(item -> { //attrs=1_5寸:8寸&2_16G:8G BoolQueryBuilder boolQuery = QueryBuilders.boolQuery(); //attrs=1_5寸:8寸 String[] s = item.split("_"); String attrId=s[0]; String[] attrValues = s[1].split(":");//这个属性检索用的值 boolQuery.must(QueryBuilders.termQuery("attrs.attrId",attrId)); boolQuery.must(QueryBuilders.termsQuery("attrs.attrValue",attrValues)); NestedQueryBuilder nestedQueryBuilder = QueryBuilders.nestedQuery("attrs",boolQuery, ScoreMode.None); boolQueryBuilder.filter(nestedQueryBuilder); }); } //1.2.4 hasStock if(null != param.getHasStock()){ boolQueryBuilder.filter(QueryBuilders.termQuery("hasStock",param.getHasStock() == 1)); } //1.2.5 skuPrice if(!StringUtils.isEmpty(param.getSkuPrice())){ //skuPrice形式为:1_500或_500或500_ RangeQueryBuilder rangeQueryBuilder = QueryBuilders.rangeQuery("skuPrice"); String[] price = param.getSkuPrice().split("_"); if(price.length==2){ rangeQueryBuilder.gte(price[0]).lte(price[1]); }else if(price.length == 1){ if(param.getSkuPrice().startsWith("_")){ rangeQueryBuilder.lte(price[1]); } if(param.getSkuPrice().endsWith("_")){ rangeQueryBuilder.gte(price[0]); } } boolQueryBuilder.filter(rangeQueryBuilder); } //封装所有的查询条件 searchSourceBuilder.query(boolQueryBuilder); /** * 排序,分页,高亮 */ //排序 //形式为sort=hotScore_asc/desc if(!StringUtils.isEmpty(param.getSort())){ String sort = param.getSort(); String[] sortFileds = sort.split("_"); SortOrder sortOrder="asc".equalsIgnoreCase(sortFileds[1])?SortOrder.ASC:SortOrder.DESC; searchSourceBuilder.sort(sortFileds[0],sortOrder); } //分页 searchSourceBuilder.from((param.getPageNum()-1)*EsConstant.PRODUCT_PAGESIZE); searchSourceBuilder.size(EsConstant.PRODUCT_PAGESIZE); //高亮 if(!StringUtils.isEmpty(param.getKeyword())){ HighlightBuilder highlightBuilder = new HighlightBuilder(); highlightBuilder.field("skuTitle"); highlightBuilder.preTags("<b style='color:red'>"); highlightBuilder.postTags("</b>"); searchSourceBuilder.highlighter(highlightBuilder); } /** * 聚合分析 */ //1. 按照品牌进行聚合 TermsAggregationBuilder brand_agg = AggregationBuilders.terms("brand_agg"); brand_agg.field("brandId").size(50); //1.1 品牌的子聚合-品牌名聚合 brand_agg.subAggregation(AggregationBuilders.terms("brand_name_agg") .field("brandName").size(1)); //1.2 品牌的子聚合-品牌图片聚合 brand_agg.subAggregation(AggregationBuilders.terms("brand_img_agg") .field("brandImg").size(1)); searchSourceBuilder.aggregation(brand_agg); //2. 按照分类信息进行聚合 TermsAggregationBuilder catalog_agg = AggregationBuilders.terms("catalog_agg"); catalog_agg.field("catalogId").size(20); catalog_agg.subAggregation(AggregationBuilders.terms("catalog_name_agg").field("catalogName").size(1)); searchSourceBuilder.aggregation(catalog_agg); //2. 按照属性信息进行聚合 NestedAggregationBuilder attr_agg = AggregationBuilders.nested("attr_agg", "attrs"); //2.1 按照属性ID进行聚合 TermsAggregationBuilder attr_id_agg = AggregationBuilders.terms("attr_id_agg").field("attrs.attrId"); attr_agg.subAggregation(attr_id_agg); //2.1.1 在每个属性ID下,按照属性名进行聚合 attr_id_agg.subAggregation(AggregationBuilders.terms("attr_name_agg").field("attrs.attrName").size(1)); //2.1.1 在每个属性ID下,按照属性值进行聚合 attr_id_agg.subAggregation(AggregationBuilders.terms("attr_value_agg").field("attrs.attrValue").size(50)); searchSourceBuilder.aggregation(attr_agg); log.debug("构建的DSL语句 {}",searchSourceBuilder.toString()); SearchRequest searchRequest = new SearchRequest(new String[]{EsConstant.PRODUCT_INDEX},searchSourceBuilder); return searchRequest; } }
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。