赞
踩
LangChain
GPT实战系列-LangChain如何构建基通义千问的多工具链
GPT实战系列-通过Basetool构建自定义LangChain工具方法
GPT实战系列-一种构建LangChain自定义Tool工具的简单方法
GPT实战系列-简单聊聊LangChain搭建本地知识库准备
GPT实战系列-LangChain + ChatGLM3构建天气查询助手
GPT实战系列-大模型为我所用之借用ChatGLM3构建查询助手
随着OpenAI的GPT-4这样的大型语言模型(LLMs)已经风靡全球,现在让它们自动执行各种任务,如回答问题、翻译语言、分析文本等。LLMs是在交互上真正体验到像“人工智能”。
如何管理这些模块呢?
LangChain在这方面发挥重要作用。LangChain使构建由LLMs驱动的应用程序变得简单,使用LangChain,可以在统一的界面中轻松与不同类型的LLMs进行交互,管理模型版本,管理对话版本,并将LLMs连接在一起。
同前篇所示,实现一个自定义工具 Tools,首先需要做一些配置初始化的工作,导入langchain相关的包。
from langchain.agents import tool
@tool
def get_word_length(word: str) -> int:
"""Returns the length of a word."""
return len(word)
tools = [get_word_length]
实现代码,创建Prompt模版,配置大模型,以及输出解析函数。
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are very powerful assistant, but don't know current events",
),
("user", "{input}"),
MessagesPlaceholder(variable_name="agent_scratchpad"),
]
)
Langchain对OpenAI支持最好,其他的,包括国产模型支持很弱,慎用。
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)
llm_with_tools = llm.bind_tools(tools)
把各碎片链接起来,建立Agent,
from langchain.agents.format_scratchpad.openai_tools import ( format_to_openai_tool_messages, ) from langchain.agents.output_parsers.openai_tools import OpenAIToolsAgentOutputParser from langchain.agents import AgentExecutor agent = ( { "input": lambda x: x["input"], "agent_scratchpad": lambda x: format_to_openai_tool_messages( x["intermediate_steps"] ), } | prompt | llm_with_tools | OpenAIToolsAgentOutputParser() ) agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True) print(list(agent_executor.stream({"input": "How many letters in the word eudca"})))
输出结果:
> Entering new AgentExecutor chain...
Invoking: `get_word_length` with `{'word': 'eudca'}`
5There are 5 letters in the word "eudca".
> Finished chain.
LangChain是一个Python框架,可以使用LLMs构建应用程序。它与各种模块连接,使与LLM和提示管理,一切变得简单。
觉得有用 收藏 收藏 收藏
点个赞 点个赞 点个赞
End
GPT专栏文章:
GPT实战系列-实战Qwen通义千问在Cuda 12+24G部署方案_通义千问 ptuning-CSDN博客
GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案
GPT实战系列-让CodeGeeX2帮你写代码和注释_codegeex 中文-CSDN博客
GPT实战系列-ChatGLM3管理工具的API接口_chatglm3 api文档-CSDN博客
GPT实战系列-LangChain + ChatGLM3构建天气查询助手
GPT实战系列-大模型为我所用之借用ChatGLM3构建查询助手
GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(二)
GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(一)
GPT实战系列-ChatGLM2部署Ubuntu+Cuda11+显存24G实战方案
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。