赞
踩
二叉树是n(n>=0)
个结点的有限集合,该集合或者为空集(称为空二叉树),或者由一个根结点和两棵互不相交的、分别称为根结点的左子树和右子树组成。
由二叉树定义以及图示分析得出二叉树有以下特点:
由二叉树定义以及图示分析得出二叉树有以下性质:
若对含 n 个结点的完全二叉树从上到下且从左至右进行 1 至 n 的编号,则对完全二叉树中任意一个编号为 i 的结点有如下特性:
- 若 i=1,则该结点是二叉树的根,无双亲, 否则,编号为 [i/2] 的结点为其双亲结点;
- 若 2i>n,则该结点无左孩子, 否则,编号为 2i 的结点为其左孩子结点;
- 若 2i+1>n,则该结点无右孩子结点, 否则,编号为2i+1 的结点为其右孩子结点。
斜树:所有的结点都只有左子树的二叉树叫左斜树。所有结点都是只有右子树的二叉树叫右斜树。这两者统称为斜树。
满二叉树:在一棵二叉树中。如果所有分支结点都存在左子树和右子树,并且所有叶子都在同一层上,这样的二叉树称为满二叉树。
满二叉树的特点有:
完全二叉树:对一颗具有n个结点的二叉树按层编号,如果编号为i(1<=i<=n)的结点与同样深度的满二叉树中编号为i的结点在二叉树中位置完全相同,则这棵二叉树称为完全二叉树。
特点:
二叉树的顺序存储结构就是使用一维数组存储二叉树中的结点,并且结点的存储位置,就是数组的下标索引。
如图一棵完全二叉树按照顺序存储:
二叉树的遍历是指从二叉树的根结点出发,按照某种次序依次访问二叉树中的所有结点,使得每个结点被访问一次,且仅被访问一次。
二叉树的访问次序可以分为四种:
前序遍历通俗的说就是从二叉树的根结点出发,当第一次到达结点时就输出结点数据,按照先向左在向右的方向访问。
1、从根结点出发,则第一次到达结点A,故输出A;
2、继续向左访问,第一次访问结点B,故输出B;
3、按照同样规则,输出D,输出H;
4、当到达叶子结点H,返回到D,此时已经是第二次到达D,故不在输出D,进而向D右子树访问,D右子树不为空,则访问至I,第一次到达I,则输出I;
5、I为叶子结点,则返回到D,D左右子树已经访问完毕,则返回到B,进而到B右子树,第一次到达E,故输出E;
6、向E左子树,故输出J;
7、按照同样的访问规则,继续输出C、F、G;
前序遍历输出为:ABDHIEJCFG
中序遍历就是从二叉树的根结点出发,当第二次到达结点时就输出结点数据,按照先向左在向右的方向访问。
1、从根结点出发,则第一次到达结点A,不输出A,继续向左访问,第一次访问结点B,不输出B;继续到达D,H;
2、到达H,H左子树为空,则返回到H,此时第二次访问H,故输出H;
3、H右子树为空,则返回至D,此时第二次到达D,故输出D;
4、由D返回至B,第二次到达B,故输出B;
5、按照同样规则继续访问,输出J、E、A、F、C、G;
中序遍历输出为:HDIBJEAFCG
先自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数初中级Java工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则近万的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《Java开发全套学习资料》送给大家,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频
如果你觉得这些内容对你有帮助,可以扫码领取!
其实我投简历的时候,都不太敢投递阿里。因为在阿里一面前已经过了字节的三次面试,投阿里的简历一直没被捞,所以以为简历就挂了。
特别感谢一面的面试官捞了我,给了我机会,同时也认可我的努力和态度。对比我的面经和其他大佬的面经,自己真的是运气好。别人8成实力,我可能8成运气。所以对我而言,我要继续加倍努力,弥补自己技术上的不足,以及与科班大佬们基础上的差距。希望自己能继续保持学习的热情,继续努力走下去。
也祝愿各位同学,都能找到自己心动的offer。
分享我在这次面试前所做的准备(刷题复习资料以及一些大佬们的学习笔记和学习路线),都已经整理成了电子文档
我要继续加倍努力,弥补自己技术上的不足,以及与科班大佬们基础上的差距。希望自己能继续保持学习的热情,继续努力走下去。
也祝愿各位同学,都能找到自己心动的offer。
分享我在这次面试前所做的准备(刷题复习资料以及一些大佬们的学习笔记和学习路线),都已经整理成了电子文档
[外链图片转存中…(img-wfLfEhdG-1711096198129)]
需要更多Java资料的小伙伴可以帮忙点赞+关注,点击传送门,即可免费领取!
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。