赞
踩
转自代码随想录
假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。
对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。
示例 1:
示例 2:
提示:
为了满足更多的小孩,就不要造成饼干尺寸的浪费。
大尺寸的饼干既可以满足胃口大的孩子也可以满足胃口小的孩子,那么就应该优先满足胃口大的。
这里的局部最优就是大饼干喂给胃口大的,充分利用饼干尺寸喂饱一个,全局最优就是喂饱尽可能多的小孩。
可以尝试使用贪心策略,先将饼干数组和小孩数组排序。
然后从后向前遍历小孩数组,用大饼干优先满足胃口大的,并统计满足小孩数量。
如图:
这个例子可以看出饼干 9 只有喂给胃口为 7 的小孩,这样才是整体最优解,并想不出反例,那么就可以撸代码了。
C++代码整体如下:
- // 版本一
- class Solution {
- public:
- int findContentChildren(vector<int>& g, vector<int>& s) {
- sort(g.begin(), g.end());
- sort(s.begin(), s.end());
- int index = s.size() - 1; // 饼干数组的下标
- int result = 0;
- for (int i = g.size() - 1; i >= 0; i--) { // 遍历胃口
- if (index >= 0 && s[index] >= g[i]) { // 遍历饼干
- result++;
- index--;
- }
- }
- return result;
- }
- };
从代码中可以看出我用了一个 index 来控制饼干数组的遍历,遍历饼干并没有再起一个 for 循环,而是采用自减的方式,这也是常用的技巧。
有的同学看到要遍历两个数组,就想到用两个 for 循环,那样逻辑其实就复杂了。
如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为摆动序列。第一个差(如果存在的话)可能是正数或负数。少于两个元素的序列也是摆动序列。
例如, [1,7,4,9,2,5] 是一个摆动序列,因为差值 (6,-3,5,-7,3) 是正负交替出现的。相反, [1,4,7,2,5] 和 [1,7,4,5,5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。
给定一个整数序列,返回作为摆动序列的最长子序列的长度。 通过从原始序列中删除一些(也可以不删除)元素来获得子序列,剩下的元素保持其原始顺序。
示例 1:
示例 2:
示例 3:
本题要求通过从原始序列中删除一些(也可以不删除)元素来获得子序列,剩下的元素保持其原始顺序。
相信这么一说吓退不少同学,这要求最大摆动序列又可以修改数组,这得如何修改呢?
来分析一下,要求删除元素使其达到最大摆动序列,应该删除什么元素呢?
用示例二来举例,如图所示:
局部最优:删除单调坡度上的节点(不包括单调坡度两端的节点),那么这个坡度就可以有两个局部峰值。
整体最优:整个序列有最多的局部峰值,从而达到最长摆动序列。
局部最优推出全局最优,并举不出反例,那么试试贪心!
(为方便表述,以下说的峰值都是指局部峰值)
实际操作上,其实连删除的操作都不用做,因为题目要求的是最长摆动子序列的长度,所以只需要统计数组的峰值数量就可以了(相当于是删除单一坡度上的节点,然后统计长度)
这就是贪心所贪的地方,让峰值尽可能的保持峰值,然后删除单一坡度上的节点
在计算是否有峰值的时候,大家知道遍历的下标 i ,计算 prediff(nums[i] - nums[i-1]) 和 curdiff(nums[i+1] - nums[i]),如果prediff < 0 && curdiff > 0
或者 prediff > 0 && curdiff < 0
此时就有波动就需要统计。
这是我们思考本题的一个大体思路,但本题要考虑三种情况:
例如 [1,2,2,2,1]这样的数组,如图:
它的摇摆序列长度是多少呢? 其实是长度是 3,也就是我们在删除的时候 要不删除左面的三个 2,要不就删除右边的三个 2。
如图,可以统一规则,删除左边的三个 2:
在图中,当 i 指向第一个 2 的时候,prediff > 0 && curdiff = 0
,当 i 指向最后一个 2 的时候 prediff = 0 && curdiff < 0
。
如果我们采用,删左面三个 2 的规则,那么 当 prediff = 0 && curdiff < 0
也要记录一个峰值,因为他是把之前相同的元素都删掉留下的峰值。
所以我们记录峰值的条件应该是: (preDiff <= 0 && curDiff > 0) || (preDiff >= 0 && curDiff < 0)
,为什么这里允许 prediff == 0 ,就是为了 上面我说的这种情况。
所以本题统计峰值的时候,数组最左面和最右面如何统计呢?
题目中说了,如果只有两个不同的元素,那摆动序列也是 2。
例如序列[2,5],如果靠统计差值来计算峰值个数就需要考虑数组最左面和最右面的特殊情况。
因为我们在计算 prediff(nums[i] - nums[i-1]) 和 curdiff(nums[i+1] - nums[i])的时候,至少需要三个数字才能计算,而数组只有两个数字。
这里我们可以写死,就是 如果只有两个元素,且元素不同,那么结果为 2。
不写死的话,如何和我们的判断规则结合在一起呢?
可以假设,数组最前面还有一个数字,那这个数字应该是什么呢?
之前我们在 讨论 情况一:相同数字连续 的时候, prediff = 0 ,curdiff < 0 或者 >0 也记为波谷。
那么为了规则统一,针对序列[2,5],可以假设为[2,2,5],这样它就有坡度了即 preDiff = 0,如图:
针对以上情形,result 初始为 1(默认最右面有一个峰值),此时 curDiff > 0 && preDiff <= 0,那么 result++(计算了左面的峰值),最后得到的 result 就是 2(峰值个数为 2 即摆动序列长度为 2)
经过以上分析后,我们可以写出如下代码:
- // 版本一
- class Solution {
- public:
- int wiggleMaxLength(vector<int>& nums) {
- if (nums.size() <= 1) return nums.size();
- int curDiff = 0; // 当前一对差值
- int preDiff = 0; // 前一对差值
- int result = 1; // 记录峰值个数,序列默认序列最右边有一个峰值
- for (int i = 0; i < nums.size() - 1; i++) {
- curDiff = nums[i + 1] - nums[i];
- // 出现峰值
- if ((preDiff <= 0 && curDiff > 0) || (preDiff >= 0 && curDiff < 0)) {
- result++;
- }
- preDiff = curDiff;
- }
- return result;
- }
- };
此时大家是不是发现 以上代码提交也不能通过本题?
所以此时我们要讨论情况三!
在版本一中,我们忽略了一种情况,即 如果在一个单调坡度上有平坡,例如[1,2,2,2,3,4],如图:
图中,我们可以看出,版本一的代码在三个地方记录峰值,但其实结果因为是 2,因为 单调中的平坡 不能算峰值(即摆动)。
之所以版本一会出问题,是因为我们实时更新了 prediff。
那么我们应该什么时候更新 prediff 呢?
我们只需要在 这个坡度 摆动变化的时候,更新 prediff 就行,这样 prediff 在 单调区间有平坡的时候 就不会发生变化,造成我们的误判。
所以本题的最终代码为:
-
- // 版本二
- class Solution {
- public:
- int wiggleMaxLength(vector<int>& nums) {
- if (nums.size() <= 1) return nums.size();
- int curDiff = 0; // 当前一对差值
- int preDiff = 0; // 前一对差值
- int result = 1; // 记录峰值个数,序列默认序列最右边有一个峰值
- for (int i = 0; i < nums.size() - 1; i++) {
- curDiff = nums[i + 1] - nums[i];
- // 出现峰值
- if ((preDiff <= 0 && curDiff > 0) || (preDiff >= 0 && curDiff < 0)) {
- result++;
- preDiff = curDiff; // 注意这里,只在摆动变化的时候更新prediff
- }
- }
- return result;
- }
- };
其实本题看起来好像简单,但需要考虑的情况还是很复杂的,而且很难一次性想到位。
给定一个非负整数数组,你最初位于数组的第一个位置。
数组中的每个元素代表你在该位置可以跳跃的最大长度。
判断你是否能够到达最后一个位置。
示例 1:
示例 2:
刚看到本题一开始可能想:当前位置元素如果是 3,我究竟是跳一步呢,还是两步呢,还是三步呢,究竟跳几步才是最优呢?
其实跳几步无所谓,关键在于可跳的覆盖范围!
不一定非要明确一次究竟跳几步,每次取最大的跳跃步数,这个就是可以跳跃的覆盖范围。
这个范围内,别管是怎么跳的,反正一定可以跳过来。
那么这个问题就转化为跳跃覆盖范围究竟可不可以覆盖到终点!
每次移动取最大跳跃步数(得到最大的覆盖范围),每移动一个单位,就更新最大覆盖范围。
贪心算法局部最优解:每次取最大跳跃步数(取最大覆盖范围),整体最优解:最后得到整体最大覆盖范围,看是否能到终点。
局部最优推出全局最优,找不出反例,试试贪心!
如图:
i 每次移动只能在 cover 的范围内移动,每移动一个元素,cover 得到该元素数值(新的覆盖范围)的补充,让 i 继续移动下去。
而 cover 每次只取 max(该元素数值补充后的范围, cover 本身范围)。
如果 cover 大于等于了终点下标,直接 return true 就可以了。
C++代码如下:
- class Solution {
- public:
- bool canJump(vector<int>& nums) {
- int cover = 0;
- if (nums.size() == 1) return true; // 只有一个元素,就是能达到
- for (int i = 0; i <= cover; i++) { // 注意这里是小于等于cover
- cover = max(i + nums[i], cover);
- if (cover >= nums.size() - 1) return true; // 说明可以覆盖到终点了
- }
- return false;
- }
- };
给定一个非负整数数组,你最初位于数组的第一个位置。
数组中的每个元素代表你在该位置可以跳跃的最大长度。
你的目标是使用最少的跳跃次数到达数组的最后一个位置。
示例:
说明: 假设你总是可以到达数组的最后一个位置。
本题相对跳跃游戏难度更大
但思路是相似的,还是要看最大覆盖范围。
本题要计算最少步数,那么就要想清楚什么时候步数才一定要加一呢?
贪心的思路,局部最优:当前可移动距离尽可能多走,如果还没到终点,步数再加一。整体最优:一步尽可能多走,从而达到最少步数。
思路虽然是这样,但在写代码的时候还不能真的能跳多远就跳多远,那样就不知道下一步最远能跳到哪里了。
所以真正解题的时候,要从覆盖范围出发,不管怎么跳,覆盖范围内一定是可以跳到的,以最小的步数增加覆盖范围,覆盖范围一旦覆盖了终点,得到的就是最少步数!
这里需要统计两个覆盖范围,当前这一步的最大覆盖和下一步最大覆盖。
如果移动下标达到了当前这一步的最大覆盖最远距离了,还没有到终点的话,那么就必须再走一步来增加覆盖范围,直到覆盖范围覆盖了终点。
如图:
图中覆盖范围的意义在于,只要红色的区域,最多两步一定可以到!(不用管具体怎么跳,反正一定可以跳到)
从图中可以看出来,就是移动下标达到了当前覆盖的最远距离下标时,步数就要加一,来增加覆盖距离。最后的步数就是最少步数。
这里还是有个特殊情况需要考虑,当移动下标达到了当前覆盖的最远距离下标时
C++代码如下:(详细注释)
- // 版本一
- class Solution {
- public:
- int jump(vector<int>& nums) {
- if (nums.size() == 1) return 0;
- int curDistance = 0; // 当前覆盖最远距离下标
- int ans = 0; // 记录走的最大步数
- int nextDistance = 0; // 下一步覆盖最远距离下标
- for (int i = 0; i < nums.size(); i++) {
- nextDistance = max(nums[i] + i, nextDistance); // 更新下一步覆盖最远距离下标
- if (i == curDistance) { // 遇到当前覆盖最远距离下标
- ans++; // 需要走下一步
- curDistance = nextDistance; // 更新当前覆盖最远距离下标(相当于加油了)
- if (nextDistance >= nums.size() - 1) break; // 当前覆盖最远距到达集合终点,不用做ans++操作了,直接结束
- }
- }
- return ans;
- }
- };
给定一个整数数组 A,我们只能用以下方法修改该数组:我们选择某个索引 i 并将 A[i] 替换为 -A[i],然后总共重复这个过程 K 次。(我们可以多次选择同一个索引 i。)
以这种方式修改数组后,返回数组可能的最大和。
示例 1:
示例 2:
示例 3:
提示:
本题思路其实比较好想了,如何可以让数组和最大呢?
贪心的思路,局部最优:让绝对值大的负数变为正数,当前数值达到最大,整体最优:整个数组和达到最大。
局部最优可以推出全局最优。
那么如果将负数都转变为正数了,K依然大于0,此时的问题是一个有序正整数序列,如何转变K次正负,让 数组和 达到最大。
那么又是一个贪心:局部最优:只找数值最小的正整数进行反转,当前数值和可以达到最大(例如正整数数组{5, 3, 1},反转1 得到-1 比 反转5得到的-5 大多了),全局最优:整个 数组和 达到最大。
虽然这道题目大家做的时候,可能都不会去想什么贪心算法,一鼓作气,就AC了。
我这里其实是为了给大家展现出来 经常被大家忽略的贪心思路,这么一道简单题,就用了两次贪心!
那么本题的解题步骤为:
对应C++代码如下:
- class Solution {
- static bool cmp(int a, int b) {
- return abs(a) > abs(b);
- }
- public:
- int largestSumAfterKNegations(vector<int>& A, int K) {
- sort(A.begin(), A.end(), cmp); // 第一步
- for (int i = 0; i < A.size(); i++) { // 第二步
- if (A[i] < 0 && K > 0) {
- A[i] *= -1;
- K--;
- }
- }
- if (K % 2 == 1) A[A.size() - 1] *= -1; // 第三步
- int result = 0;
- for (int a : A) result += a; // 第四步
- return result;
- }
- };
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。