如果一个软件开发人员,不了解软件架构的演进,会制约技术的选型和开发人员的生存、晋升空间。这里我列举了目前主要的四种软件架构以及他们的优缺点,希望能够帮助软件开发人员拓展知识面。
一、单体架构
单体架构比较初级,典型的三级架构,前端(Web/手机端)+中间业务逻辑层+数据库层。这是一种典型的Java Spring mvc或者Python Django框架的应用。其架构图如下所示:
单体架构
单体架构的应用比较容易部署、测试, 在项目的初期,单体应用可以很好地运行。然而,随着需求的不断增加, 越来越多的人加入开发团队,代码库也在飞速地膨胀。慢慢地,单体应用变得越来越臃肿,可维护性、灵活性逐渐降低,维护成本越来越高。
下面是单体架构应用的一些缺点:
- 复杂性高:以一个百万行级别的单体应用为例,整个项目包含的模块非常多、模块的边界模糊、 依赖关系不清晰、 代码质量参差不齐、 混乱地堆砌在一起。可想而知整个项目非常复杂。每次修改代码都心惊胆战, 甚至添加一个简单的功能, 或者修改一个Bug都会带来隐含的缺陷。
- 技术债务:随着时间推移、需求变更和人员更迭,会逐渐形成应用程序的技术债务, 并且越积 越多。“ 不坏不修”, 这在软件开发中非常常见, 在单体应用中这种思想更甚。已使用的系统设计或代码难以被修改,因为应用程序中的其他模块可能会以意料之外的方式使用它。
- 部署频率低:随着代码的增多,构建和部署的时间也会增加。而在单体应用中, 每次功能的变更或缺陷的修复都会导致需要重新部署整个应用。全量部署的方式耗时长、 影响范围大、 风险高, 这使得单体应用项目上线部署的频率较低。而部署频率低又导致两次发布之间会有大量的功能变更和缺陷修复,出错率比较高。
- 可靠性差:某个应用Bug,例如死循环、内存溢出等, 可能会导致整个应用的崩溃。
- 扩展能力受限:单体应用只能作为一个整体进行扩展,无法根据业务模块的需要进行伸缩。例如,应用中有的模块是计算密集型的,它需要强劲的CPU;有的模块则是IO密集型的,需要更大的内存。由于这些模块部署在一起,不得不在硬件的选择上做出妥协。
- 阻碍技术创新:单体应用往往使用统一的技术平台或方案解决所有的问题, 团队中的每个成员 都必须使用相同的开发语言和框架,要想引入新框架或新技术平台会非常困难。
二、分布式应用
- 大型互联网架构演进过程
- 架构师应具备的分布式知识
- 主流分布式架构设计详解
文末有架构图集领取
中级架构,分布式应用,中间层分布式+数据库分布式,是单体架构的并发扩展,将一个大的系统划分为多个业务模块,业务模块分别部署在不同的服务器上,各个业务模块之间通过接口进行数据交互。数据库也大量采用分布式数据库,如redis、ES、solor等。通过LVS/Nginx代理应用,将用户请求均衡的负载到不同的服务器上。其架构图如下所示:
分布式架构
该架构相对于单体架构来说,这种架构提供了负载均衡的能力,大大提高了系统负载能力,解决了网站高并发的需求。另外还有以下特点:
- 降低了耦合度:把模块拆分,使用接口通信,降低模块之间的耦合度。
- 责任清晰:把项目拆分成若干个子项目,不同的团队负责不同的子项目。
- 扩展方便:增加功能时只需要再增加一个子项目,调用其他系统的接口就可以。
- 部署方便:可以灵活的进行分布式部署。
- 提高代码的复用性:比如service层,如果不采用分布式rest服务方式架构就会在手机wap商城,微信商城,pc,android,ios每个端都要写一个service层逻辑,开发量大,难以维护一起升级,这时候就可以采用分布式rest服务方式,公用一个service层。
缺点 : 系统之间的交互要使用远程通信,接口开发增大工作量,但是利大于弊。
三、微服务架构
- 服务的前世今生
- 基于分布式思想下的RPC解决方案
- Dubbo应用及源码解读
- SpringBoot
- SpringCloud应用及源码解读
- Docker虚拟化技术
文末领取清晰图片
微服务架构,主要是中间层分解,将系统拆分成很多小应用(微服务),微服务可以部署在不同的服务器上,也可以部署在相同的服务器不同的容器上。当应用的故障不会影响到其他应用,单应用的负载也不会影响到其他应用,其代表框架有Spring cloud、Dubbo等。其架构图如下所示:
- 易于开发和维护:一个微服务只会关注一个特定的业务功能,所以它业务清晰、代码量较少。开发和维护单个微服务相对简单。而整个应用是由若干个微服务构建而成的,所以整个应用也会被维持在一个可控状态。
- 单个微服务启动较快:单个微服务代码量较少, 所以启动会比较快。
- 局部修改容易部署:单体应用只要有修改,就得重新部署整个应用,微服务解决了这样的问题。一般来说,对某个微服务进行修改,只需要重新部署这个服务即可。
- 技术栈不受限:在微服务架构中,可以结合项目业务及团队的特点,合理地选择技术栈。例如某些服务可使用关系型数据库MySQL;某些微服务有图形计算的需求,可以使用Neo4j;甚至可根据需要,部分微服务使用Java开发,部分微服务使用Node.js开发。
- 微服务虽然有很多吸引人的地方,但它并不是免费的午餐,使用它是有代价的。使用微服务架构面临的挑战。
- 运维要求较高:更多的服务意味着更多的运维投入。在单体架构中,只需要保证一个应用的正常运行。而在微服务中,需要保证几十甚至几百个服务服务的正常运行与协作,这给运维带来了很大的挑战。
- 分布式固有的复杂性:使用微服务构建的是分布式系统。对于一个分布式系统,系统容错、网络延迟、分布式事务等都会带来巨大的挑战。
- 接口调整成本高:微服务之间通过接口进行通信。如果修改某一个微服务的API,可能所有使用了该接口的微服务都需要做调整。
- 重复劳动:很多服务可能都会使用到相同的功能,而这个功能并没有达到分解为一个微服务的程度,这个时候,可能各个服务都会开发这一功能,从而导致代码重复。尽管可以使用共享库来解决这个问题(例如可以将这个功能封装成公共组件,需要该功能的微服务引用该组件),但共享库在多语言环境下就不一定行得通了。
四、Serverless架构
当我们还在容器的浪潮中前行时,已经有一些革命先驱悄然布局另外一个云计算战场:Serverless架构。
Serverless架构
2014年11月14日,亚马逊AWS发布了新产品Lambda。当时Lambda被描述为:一种计算服务,根据时间运行用户的代码,无需关心底层的计算资源。从某种意义上来说,Lambda姗姗来迟,它像云计算的PaaS理念:客户只管业务,无需担心存储和计算资源。
在此前不久,2014年10月22日,谷歌收购了实时后端数据库创业公司Firebase。Firebase声称开发者只需引用一个API库文件就可以使用标准REST API的各种接口对数据进行读写操作,只需编写HTML+CSS+JavaScrip前端代码,不需要服务器端代码(如需整合,也极其简单)。
相对于上两者,Facebook 在2014年二月收购的 Parse,则侧重于提供一个通用的后台服务。这些服务被称为Serverless或no sever。想到PaaS(平台即服务)了是吗?很像,用户不需要关心基础设施,只需要关心业务,这是迟到的PaaS,也是更实用的PaaS。这很有可能将会变革整个开发过程和传统的应用生命周期,一旦开发者们习惯了这种全自动的云上资源的创建和分配,或许就再也回不到那些需要微应用配置资源的时代里去了。
对于Serverless架构,我没有全部展示出来,那如果有感兴趣了解的老友们呢...可以加入我私人群一起讨论学习!
对技术感兴趣的老友们,可以加我的私人群欢迎看我主页进我的个人群【点击进入我的主页】一起交流学习!
喜欢我的分布式、微服务系统图的也能分享给大家哦~我对架构体系做了一系列的系统图,很开心能分享给大家,可以啦!