当前位置:   article > 正文

《PRML》学习笔记2.2——多项式分布和狄利克雷分布_多项式分布与迪利克雷分布

多项式分布与迪利克雷分布

    上回讲完了伯努利分布、二项分布和Beta分布,以及从最大似然估计的非参数化思想和引入共轭先验,使得参数变成一个变量,建模求解的参数化方法两方面介绍了求解模型参数\mu的方法。没有读过的朋友可以参考:《PRML》学习笔记2.1——伯努利分布、二项分布和Beta分布,从贝叶斯观点出发

    今天将为大家介绍两个更难理解的分布——多项式分布和狄利克雷分布。

1.多项式变量和多项式分布

    伯努利分布的一个经典例子就是掷硬币,当你掷出去的时候,得到的结果只有正面朝上或者反面朝上两种可能,因此可以用p(x|\mu)=\mu^{x}\cdot(1-\mu)^{1-x}进行建模。概率密度的表达式中,x的取值只有两种情况——0或1,那么,这个建模方法就不适用于掷骰子了,毕竟骰子有6个面,对应着6种投掷结果。所以这时候就要将服从伯努利分布的变量进行扩展了。

    首先,使用一种方式来表达投掷骰子的结果,这里推荐的是"1-of-K"表示法,使用一个K维向量\boldsymbol{x}来表示状态,向量中一个元素xk等于1,其余元素为0,用来表示发生的是第k中情况:

                                                                          \large \boldsymbol{x}=(0,0,0,1,0,0)^T                                                                                  (1)

    如果用参数\mu_k表示xk=1的概率,那么\mathbf{x}的分布为:

                                                                          \large p(\boldsymbol{x}|\boldsymbol{\mu})=\prod_{k=1}^{K}\mu_k^{x_k}                                                                                        (2)

    因为\mu_k代表的是一种情况的概率,所以\mu_k满足

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/你好赵伟/article/detail/195574
推荐阅读
  

闽ICP备14008679号