赞
踩
结构化查询语言SQL(Structured Query Language):是在关系数据库上执行数据操作,检索及维护所使用的标准语言,可以用来查询数据、定义数据、控制事务。
MySQL的慢查询日志是MySQL提供的一种日志记录,它用来记录在MySQL中响应时间超过阀值的语句,具体指运行时间超过long_query_time值的SQL,则会被记录到慢查询日志中。long_query_time的默认值为10,意思是运行10S以上的语句。默认情况下,Mysql数据库并不启动慢查询日志,需要我们手动来设置这个参数,当然,如果不是调优需要的话,一般不建议启动该参数,因为开启慢查询日志会或多或少带来一定的性能影响。慢查询日志支持将日志记录写入文件,也支持将日志记录写入数据库表。
MySQL 慢查询的相关参数解释:
-- 查看mysql版本:
select version();
-- 查看慢日志是否开启:
show variables like '%slow_query_log%';
-- 开启慢日志:
set global slow_query_log=1;
-- 或者
set global slow_query_log='ON';
-- 关闭慢日志:
set global slow_query_log=0;
-- 或者
set global slow_query_log='OFF';
开启了慢查询日志后,什么样的SQL才会记录到慢查询日志里面呢? 这个是由参数long_query_time控制,默认情况下long_query_time的值为10秒,可以使用命令修改,也可以在my.cnf参数里面修改。关于运行时间正好等于long_query_time的情况,并不会被记录下来。也就是说,在mysql源码里是判断大于long_query_time,而非大于等于。从MySQL 5.1开始,long_query_time开始以微秒记录SQL语句运行时间,之前仅用秒为单位记录。如果记录到表里面,只会记录整数部分,不会记录微秒部分。
-- 查看慢日志记录时间阀值:
show variables like '%long_query_time%';
SQL中的drop、delete、truncate都表示删除,但是三者有一些差别
delete和truncate只删除表的数据不删除表的结构
速度,一般来说: drop > truncate > delete
delete语句是dml,这个操作会放到rollback segement中,事务提交之后才生效;如果有相应的trigger,执行的时候将被触发
truncate,drop是ddl, 操作立即生效,原数据不放到rollback segment中,不能回滚. 操作不触发trigger。
视图是一种虚拟的表,具有和物理表相同的功能。可以对视图进行增、改、查操作,视图通常是有一个表或者多个表的行或列的子集。对视图的修改不影响基本表。它使得我们获取数据更容易,相比多表查询。
索引是对数据库表中一个或多个列的值进行排序的结构,建立索引有助于快速获取信息。索引就是加快检索表中数据的方法。数据库的索引类似于书籍的索引。在书籍中,索引允许用户不必翻阅完整个书就能迅速地找到所需要的信息。在数据库中,索引也允许数据库程序迅速地找到表中的数据,而不必扫描整个数据库。
索引并非是越多越好,创建索引也需要耗费资源,一是增加了数据库的存储空间,二是在插入和删除时要花费较多的时间维护索引。
CREATE TABLE user_index2 (
id INT auto_increment PRIMARY KEY,
first_name VARCHAR (16),
last_name VARCHAR (16),
id_card VARCHAR (18),
information text,
KEY name (first_name, last_name),
FULLTEXT KEY (information),
UNIQUE KEY (id_card)
);
ALTER TABLE table_name ADD INDEX index_name (column_list);
-- ALTER TABLE用来创建普通索引、UNIQUE索引或PRIMARY KEY索引。其中table_name是要增加索引的表名,column_list指出对哪些列进行索引,多列时各列之间用逗号分隔。索引名index_name可自己命名,缺省时,MySQL将根据第一个索引列赋一个名称。另外,ALTER TABLE允许在单个语句中更改多个表,因此可以在同时创建多个索引。
CREATE INDEX index_name ON table_name (column_list);
-- CREATE INDEX可对表增加普通索引或UNIQUE索引。(但是,不能创建PRIMARY KEY索引)。
删除索引
根据索引名删除普通索引、唯一索引、全文索引: alter table 表名 drop KEY 索引名
alter table user_index drop KEY name;
alter table user_index drop KEY id_card;
alter table user_index drop KEY information;
删除主键索引: alter table 表名 drop primary key (因为主键只有一个)。这里值得注意的是,如果主键自增长,那么不能直接执行此操作(自增长依赖于主键索引), 需要取消自增长再删除主键索引。
alter table user_index MODIFY id int, drop PRIMARY KEY
因为要是分成多个表之后,每个表都是从 1 开始累加,这样是不对的,我们需要一个全局唯一的 id 来支持。生成全局 id 有下面这几种方式:
MySQL服务器通过权限表来控制用户对数据库的访问,权限表存放在mysql数据库里,由mysql_install_db脚本初始化。这些权限表分别user,db,table_priv,columns_priv和host。下面分别介绍一下这些表的结构和内容:
在 Mysql 表中允许有六个触发器,如下:
SQL 语言不同于其他编程语言的最明显特征是处理代码的顺序。在大多数据库语言中,代码按编码顺序被处理。但在 SQL 语句中,第一个被处理的子句式 FROM,而不是第一出现的 SELECT。SQL 查询处理的步骤序号:
(1) FROM <left_table>
(2) <join_type> JOIN <right_table>
(3) ON <join_condition>
(4) WHERE <where_condition>
(5) GROUP BY <group_by_list>
(6) WITH {CUBE | ROLLUP}
(7) HAVING <having_condition>
(8) SELECT
(9) DISTINCT
(9) ORDER BY <order_by_list>
(10) <TOP_specification> <select_list>
以上每个步骤都会产生一个虚拟表,该虚拟表被用作下一个步骤的输入。这些虚拟表对调用者(客户端应用程序或者外部查询)不可用。只有最后一步生成的表才会会给调用者。如果没有在查询中指定某一个子句,将跳过相应的步骤。
逻辑查询处理阶段简介:
MySQL 包含对触发器的支持。触发器是一种与表操作有关的数据库对象,当触发器所在表上出现指定事件时,将调用该对象,即表的操作事件触发表上的触发器的执行。
在 MySQL 中,创建触发器语法如下:
CREATE TRIGGER trigger_name
trigger_time
trigger_event ON tbl_name
FOR EACH ROW
trigger_stmt
其中:
trigger_name:标识触发器名称,用户自行指定;
trigger_time:标识触发时机,取值为 BEFORE 或 AFTER;
trigger_event:标识触发事件,取值为 INSERT、UPDATE 或 DELETE;
tbl_name:标识建立触发器的表名,即在哪张表上建立触发器;
trigger_stmt:触发器程序体,可以是一句 SQL 语句,或者用 BEGIN 和 END 包含的多条语句。
由此可见,可以建立 6 种触发器,即:BEFORE INSERT、BEFORE UPDATE、BEFORE DELETE、AFTER INSERT、AFTER UPDATE、AFTER DELETE。
另外有一个限制是不能同时在一个表上建立 2 个相同类型的触发器,因此在一个表上最多建立 6 个触发器。
create trigger tri_stuInsert after insert
on student for each row
begin
declare c int;
set c = (select stuCount from class where classID=new.classID);
update class set stuCount = c + 1 where classID = new.classID;
查看触发器:
和查看数据库(show databases;)查看表格(show tables;)一样,查看触发器的语法如下:
SHOW TRIGGERS [FROM schema_name];
删除触发器:
DROP TRIGGER [IF EXISTS] [schema_name.]trigger_name
存储过程(Stored Procedure )是一组为了完成特定功能的 SQL 语句集,经编译后存储在数据库中。用户通过指定存储过程的名字并给出参数(如果该存储过程带有参数)来执行它。存储过程是数据库中的一个重要对象,任何一个设计良好的数据库应用程序都应该用到存储过程。
优点:
(1)允许模块化程序设计,就是说只需要创建一次过程,以后在程序中就可以调用该过程任意次。
(2)允许更快执行,如果某操作需要执行大量 SQL 语句或重复执行,存储过程比 SQL 语句执行的要快。
(3)减少网络流量,例如一个需要数百行的 SQL 代码的操作有一条执行语句完成,不需要在网络中发送数百行代码。
(4)更好的安全机制,对于没有权限执行存储过程的用户,也可授权他们执行存储过程。
MySQL 怎么创建存储过程
MySQL 存储过程是从 MySQL5.0 开始增加的新功能。存储过程的优点有一箩筐。不过最主要的还是执行效率和SQL 代码封装。特别是 SQL 代码封装功能,如果没有存储过程,在外部程序访问数据库时,要组织很多 SQL 语句。特别是业务逻辑复杂的时候,一大堆的 SQL 和条件夹杂在代码中,让人不寒而栗。现在有了 MySQL 存储过程,业务逻辑可以封装存储过程中,这样不仅容易维护,而且执行效率也高。
一、创建 MySQL 存储过程
下面代码创建了一个叫 pr_add 的 MySQL 存储过程,这个 MySQL 存储过程有两个 int 类型的输入参数“a”、“b”,返回这两个参数的和。
1)drop procedure if exists pr_add; (备注:如果存在 pr_add 的存储过程,则先删掉)
2)计算两个数之和(备注:实现计算两个整数之和的功能)
create procedure pr_add ( a int, b int ) begin declare c int;
if a is null then set a = 0;
end if;
if b is null then set b = 0;
end if;
set c = a + b;
select c as sum;
二、调用 MySQL 存储过程
call pr_add(10, 20);
SQL 标准定义了四个隔离级别:
索引是在存储引擎中实现的,而不是在服务器层中实现的。所以,每种存储引擎的索引都不一定完全相同,并不是所有的存储引擎都支持所有的索引类型。
索引的选择性是指,不重复的索引值(基数)和数据表中的记录总数(#T)的比值,范围从1/#T之间。索引的选择性越高则查询效率越高,因为选择性高的索引可以让MYSQL在查找时过滤掉更多的行。
唯一索引的选择性是1,这是最好的索引选择性,性能也是最好的。
一般情况下某个前缀的选择性也是足够高的,足以满足查询性能。对于BLOB、TEXT或者很长的VARCHAR类型的列,必须使用前缀索引,因为MYSQL不允许索引这些列的完整长度。
前缀索引是一种能使索引更小、更快的有效办法,但另一方面也有其缺点:MYSQL无法使用前缀索引做order by和group by,也无法使用前缀索引做覆盖扫描。
索引确实是一种查找数据的高效方式,但是MYSQL也可以使用索引来直接获取列的数据,这样就不再需要读取数据行。索引的叶子节点中已经包含要查询的数据,那么就没有必要再回表查询了,如果索引包含满足查询的所有数据,就称为覆盖索引。覆盖索引不能是任何索引,只有B-TREE索引存储相应的值。而且不同的存储引擎实现覆盖索引的方式都不同,并不是所有存储引擎都支持覆盖索引(Memory和Falcon就不支持)。
Mysql索引
索引需要占用磁盘空间,因此在创建索引时要考虑到磁盘空间是否足够;
创建索引时需要对表加锁,因此实际操作中需要在业务空闲期间进行。
索引的优缺点
优势:可以快速检索,减少I/O次数,加快检索速度;根据索引分组和排序,可以加快分组和排序。
劣势:索引本身也是表,因此会占用存储空间,一般来说,索引表占用的空间是数据表的1.5倍;索引表的维护和创建需要时间成本,这个成本随着数据量增大而增大;构建索引会降低数据表的修改操作(删除,添加,修改)的效率,因为在修改数据表的同时还需要修改索引表。
常见的索引类型有:主键索引、唯一索引、普通索引、全文索引、组合索引
1、主键索引:即主索引,根据主键pk_clolum(length)建立索引,不允许重复,不允许空值
ALTER TABLE 'table_name' ADD PRIMARY KEY pk_index('col');
2、唯一索引:用来建立索引的列的值必须是唯一的,允许空值
ALTER TABLE 'table_name' ADD UNIQUE index_name('col');
3、普通索引:用表中的普通列构建的索引,没有任何限制
ALTER TABLE 'table_name' ADD INDEX index_name('col');
4、全文索引:用大文本对象的列构建的索引(下一部分会讲解)
ALTER TABLE 'table_name' ADD FULLTEXT INDEX ft_index('col');
5、组合索引:用多个列组合构建的索引,这多个列中的值不允许有空值
ALTER TABLE 'table_name' ADD INDEX index_name('col1','col2','col3');
*遵循“最左前缀”原则,把最常用作为检索或排序的列放在最左,依次递减,组合索引相当于建立了col1,col1col2,col1col2col3三个索引,而col2或者col3是不能使用索引的。
*在使用组合索引的时候可能因为列名长度过长而导致索引的key太大,导致效率降低,在允许的情况下,可以只取col1和col2的前几个字符作为索引
ALTER TABLE 'table_name' ADD INDEX index_name(col1(4),col2(3));
索引的实现原理
MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BTree索引,B+Tree索引,哈希索引,全文索引等等,
1、哈希索引:
只有memory(内存)存储引擎支持哈希索引,哈希索引用索引列的值计算该值的hashCode,然后在hashCode相应的位置存储该值所在行数据的物理位置,因为使用散列算法,因此访问速度非常快,但是一个值只能对应一个hashCode,而且是散列的分布方式,因此哈希索引不支持范围查找和排序的功能。
Hash索引有以下一些限制:
(1)由于索引仅包含hash code和记录指针,所以,MySQL不能通过使用索引避免读取记录。但是访问内存中的记录是非常迅速的,不会对性造成太大的影响。
(2)不能使用hash索引排序。
(3)Hash索引不支持键的部分匹配,因为是通过整个索引值来计算hash值的。
(4)Hash索引只支持等值比较,例如使用=,IN( )和<=>。对于WHERE price>100并不能加速查询。
(5)访问Hash索引的速度非常快,除非有很多哈希冲突(不同的索引列值却有相同的哈希值)。
当出现哈希冲突的时候,存储引擎必须遍历链表中所有的行指针,逐行进行比较,直到找到所有符合条件的行。
(6)如果哈希冲突很多的话,一些索引维护操作的代价也会很高。当从表中删除一行时,存储引擎要遍历对应哈希值的链表中的每一行,找到并删除对应行的引用,冲突越多,代价越大。
2、全文索引:
FULLTEXT(全文)索引,仅可用于MyISAM和InnoDB,针对较大的数据,生成全文索引非常的消耗时间和空间。对于文本的大对象,或者较大的CHAR类型的数据,如果使用普通索引,那么匹配文本前几个字符还是可行的,但是想要匹配文本中间的几个单词,那么就要使用LIKE %word%来匹配,这样需要很长的时间来处理,响应时间会大大增加,这种情况,就可使用FULLTEXT索引了,在生成FULLTEXT索引时,会为文本生成一份单词的清单,在索引时及根据这个单词的清单来索引。FULLTEXT可以在创建表的时候创建,也可以在需要的时候用ALTER或者CREATE INDEX来添加:
//创建表的时候添加FULLTEXT索引
CTREATE TABLE my_table(
id INT(10) PRIMARY KEY,
name VARCHAR(10) NOT NULL,
my_text TEXT,
FULLTEXT(my_text)
)ENGINE=MyISAM DEFAULT CHARSET=utf8;
//创建表以后,在需要的时候添加FULLTEXT索引
ALTER TABLE my_table ADD FULLTEXT INDEX ft_index(column_name);
全文索引的查询也有自己特殊的语法,而不能使用LIKE %查询字符串%的模糊查询语法
SELECT * FROM table_name MATCH(ft_index) AGAINST('查询字符串');
3、空间(R-Tree)索引
MyISAM支持空间索引,主要用于地理空间数据类型,例如GEOMETRY
聚簇索引和非聚簇索引
MySQL中最常见的两种存储引擎分别是MyISAM和InnoDB,分别实现了非聚簇索引和聚簇索引。
聚簇索引的解释是:聚簇索引的顺序就是数据的物理存储顺序。
非聚簇索引的解释是:索引顺序与数据物理排列顺序无关。
首先要介绍几个概念,在索引的分类中,我们可以按照索引的键是否为主键来分为“主索引”和“辅助索引”,使用主键键值建立的索引称为“主索引”,其它的称为“辅助索引”。因此主索引只能有一个,辅助索引可以有很多个。
MyISAM——非聚簇索引
MyISAM存储引擎采用的是非聚簇索引,非聚簇索引的主索引和辅助索引几乎是一样的,只是主索引不允许重复,不允许空值,他们的叶子结点的key都存储指向键值对应的数据的物理地址。
非聚簇索引的数据表和索引表是分开存储的。
非聚簇索引中的数据是根据数据的插入顺序保存。因此非聚簇索引更适合单个数据的查询。插入顺序不受键值影响。
只有在MyISAM中才能使用FULLTEXT索引。(mysql5.6以后innoDB也支持全文索引)
InnoDB——聚簇索引
聚簇索引的主索引的叶子结点存储的是键值对应的数据本身,辅助索引的叶子结点存储的是键值对应的数据的主键键值。因此主键的值长度越小越好,类型越简单越好。
聚簇索引的数据和主键索引存储在一起。
聚簇索引的数据是根据主键的顺序保存。因此适合按主键索引的区间查找,可以有更少的磁盘I/O,加快查询速度。但是也是因为这个原因,聚簇索引的插入顺序最好按照主键单调的顺序插入,否则会频繁的引起页分裂,严重影响性能。
在InnoDB中,如果只需要查找索引的列,就尽量不要加入其它的列,这样会提高查询效率。
*使用主索引的时候,更适合使用聚簇索引,因为聚簇索引只需要查找一次,而非聚簇索引在查到数据的地址后,还要进行一次I/O查找数据。
*因为聚簇辅助索引存储的是主键的键值,因此可以在数据行移动或者页分裂的时候降低成本,因为这时不用维护辅助索引。但是由于主索引存储的是数据本身,因此聚簇索引会占用更多的空间。
*聚簇索引在插入新数据的时候比非聚簇索引慢很多,因为插入新数据时需要检测主键是否重复,这需要遍历主索引的所有叶节点,而非聚簇索引的叶节点保存的是数据地址,占用空间少,因此分布集中,查询的时候I/O更少,但聚簇索引的主索引中存储的是数据本身,数据占用空间大,分布范围更大,可能占用好多的扇区,因此需要更多次I/O才能遍历完毕。
从上图中可以看到聚簇索引的辅助索引的叶子节点的data存储的是主键的值,主索引的叶子节点的data存储的是数据本身,也就是说数据和索引存储在一起,并且索引查询到的地方就是数据(data)本身,那么索引的顺序和数据本身的顺序就是相同的;
而非聚簇索引的主索引和辅助索引的叶子节点的data都是存储的数据的物理地址,也就是说索引和数据并不是存储在一起的,数据的顺序和索引的顺序并没有任何关系,也就是索引顺序与数据物理排列顺序无关。
什么时候要使用索引?
什么时候不要使用索引?
索引失效的情况:
什么是事务:
多条sql语句,要么全部成功,要么全部失败。
事务的特性:
数据库事务特性:原子性(Atomic)、一致性(Consistency)、隔离性(Isolation)、持久性(Durabiliy)。简称ACID。
在典型的应用程序中,多个事务并发运行,经常会操作相同的数据来完成各自的任务(多个用户对同一数据进行操作)。并发虽然是必须的,但可能会导致以下的问题。
脏读(Dirty read): 当一个事务正在访问数据并且对数据进行了修改,而这种修改还没有提交到数据库中,这时另外一个事务也访问了这个数据,然后使用了这个数据。因为这个数据是还没有提交的数据,那么另外一个事务读到的这个数据是“脏数据”,依据“脏数据”所做的操作可能是不正确的。如: 一个事务正在对数据进行更新操作,但是更新还未提交,另一个事务这时也来操作这组数据,并且读取了前一个事务还未提交的数据,而前一个事务如果操作失败进行了回滚,后一个事务读取的就是错误数据,这样就造成了脏读。
丢失修改(Lost to modify): 指在一个事务读取一个数据时,另外一个事务也访问了该数据,那么在第一个事务中修改了这个数据后,第二个事务也修改了这个数据。这样第一个事务内的修改结果就被丢失,因此称为丢失修改。例如:事务1读取某表中的数据A=20,事务2也读取A=20,事务1修改A=A-1,事务2也修改A=A-1,最终结果A=19,事务1的修改被丢失。
不可重复读(Unrepeatableread): 指在一个事务内多次读同一数据。在这个事务还没有结束时,另一个事务也访问该数据。那么,在第一个事务中的两次读数据之间,由于第二个事务的修改导致第一个事务两次读取的数据可能不太一样。这就发生了在一个事务内两次读到的数据是不一样的情况,因此称为不可重复读。如: 一个事务多次读取同一数据,在该事务还未结束时,另一个事务也对该数据进行了操作,而且在第一个事务两次次读取之间,第二个事务对数据进行了更新,那么第一个事务前后两次读取到的数据是不同的,这样就造成了不可重复读。
幻读(Phantom read): 幻读与不可重复读类似。它发生在一个事务(T1)读取了几行数据,接着另一个并发事务(T2)插入了一些数据时。在随后的查询中,第一个事务(T1)就会发现多了一些原本不存在的记录,就好像发生了幻觉一样,所以称为幻读。如: 第一个数据正在查询符合某一条件的数据,这时,另一个事务又插入了一条符合条件的数据,第一个事务在第二次查询符合同一条件的数据时,发现多了一条前一次查询时没有的数据,仿佛幻觉一样,这就是幻像读。
不可重复读和幻读的区别:
不可重复读的重点是修改比如多次读取一条记录发现其中某些列的值被修改,幻读的重点在于新增或者删除比如多次读取一条记录发现记录增多或减少了。
数据库引擎是用于存储、处理和保护数据的核心服务。
利用数据库引擎可控制访问权限并快速处理事务,从而满足企业内大多数需要处理大量数据的应用程序的要求。
使用数据库引擎创建用于联机事务处理或联机分析处理数据的关系数据库。
包括创建用于存储数据的表和用于查看、管理和保护数据安全的数据库对象(如索引、视图和存储过程)。
你能用的数据库引擎类别取决于mysql在安装的时候是如何被编译的。
要添加一个新的引擎,你就必须重新编译MySQL。在缺省情况下,MySQL支持三个引擎:ISAM、MYISAM和HEAP。另外两种类型INNODB和BERKLEY(BDB),也经常被使用。
ISAM是一个定义明确且历经时间考验的数据表格管理方法,它在设计之时就考虑到数据库被查询的次数要远大于更新的次数。因此,ISAM执行读取操作的速度很快,而且不占用大量的内存和存储资源。ISAM的两个主要不足之处在于,它不支持事务处理,也不能够容错:如果你的硬盘崩溃了,那么数据文件就无法恢复了。如果你正在把ISAM用在关键任务应用程序里,那就必须经常备份你所有的实时数据,通过其复制特性,MySQL能够支持这样的备份应用程序。
MYISAM是MYSQL的ISAM扩展格式和缺省的数据库引擎。除了提供ISAM里所没有的索引和字段管理的功能,MYISAM还使用一种表格锁定的机制,来优化多个并发的读写操作。其代价是你需要经常运行OPTIMIZE TABLE命令,来恢复被更新机制所浪费的空间。MYISAM还有一些有用的扩展,例如用来修复数据库文件的MYISAMCHK工具和用来恢复浪费空间的MYISAMPACK工具。
HEAP允许只驻留在内存里的临时表格。驻留在内存里让HEAP要比ISAM和MYISAM都快,但是它所管理的数据是不稳定的,而且如果在关机前没有进行保存,那么所有的数据都会丢失。在数据行被删除的时候,HEAP也不会浪费大量的空间。HEAP表格在你需要使用SELECT表达式来选择和操控数据的时候非常有用。要记住,在用完表格之后就删除表格。
INNODB和BERKLEYDB(BDB)数据库引擎都是造就MySQL灵活性的技术的直接产品,这项技术就是MySQL++API。在使用MySQL的时候,你所面对的每一个挑战几乎都源于ISAM和MYISAM数据库引擎不支持事务处理也不支持外来键。尽管要比ISAM和MYISAM引擎慢很多,但是INNODB和BDB包括了对事务处理和外来键的支持,这两点都是前两个引擎所没有的。如前所述,如果你的设计需要这些特性中的一者或者两者,那你就要被迫使用后两个引擎中的一个了。
-- 查看当前数据库支持的引擎和默认的数据库引擎:
show engines;
-- 修改数据库引擎:
-- 1、修改my.ini文件,增加default-storage-engine=InnoDB
-- 2、建表时指定:
create table mytb1( id int primary key, name varchar(50) )type=MyISAM;
-- 3、建表后更改:
alter table mytbl2 type=InnoDB;
-- 如何查看mysql提供的所有存储引擎
show engines; -- mysql常用引擎包括:MYISAM、Innodb、Memory、MERGE
MYISAM:全表锁,拥有较高的执行速度,不支持事务,不支持外键,并发性能差,占用空间相对较小,对事务完整性没有要求,以select、insert为主的应用基本上可以使用这引擎;
Innodb:行级锁,提供了具有提交、回滚和崩溃回复能力的事务安全,支持自动增长列,支持外键约束,并发能力强,占用空间是MYISAM的2.5倍,处理效率相对会差一些;
Memory:全表锁,存储在内存中,速度快,但会占用和数据量成正比的内存空间且数据在mysql重启时会丢失,默认使用HASH索引,检索效率非常高,但不适用于精确查找,主要用于那些内容变化不频繁的代码表;
MERGE:是一组MYISAM表的组合。
InnoDB与MyISAM的区别
如何选择引擎?
如果没有特别的需求,使用默认的 Innodb 即可。
MyISAM:以读写插入为主的应用程序,比如博客系统、新闻门户网站。
Innodb:更新(删除)操作频率也高,或者要保证数据的完整性;并发量高,支持事务和外键。比如OA自动化办公系统。
当MySQL单表记录数过大时,数据库的CRUD性能会明显下降,一些常见的优化措施如下:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。