赞
踩
来源 | 美团无人配送
知圈 | 进“高精度地图社群”,请加微信15221054164,备注地图
本文 介绍美团无人配送团队在CVPR2020中发表的文章『CenterMask: single shot instance segmentation with point representation』,介绍了美团无人配送团队提出的基于one-stage的图像实例分割算法CenterMask,图像的实例分割算法在地图要素提取、自动驾驶车辆感知等众多领域都有十分重要的应用。ー 1 ー
背景
▲one-stage实例分割的意义 图像的实例分割是计算机视觉中重要且基础的问题之一,其在众多领域具有十分重要的应用,比如:地图要素提取、自动驾驶车辆感知等。不同于目标检测和语义分割,实例分割需要对图像中的每个实例(物体)同时进行定位、分类和分割。从这个角度看,实例分割兼具目标检测和语义分割的特性,因此更具挑战。当前两阶段(two-stage)目标检测网络(Faster RCNN[2]系列)被广泛用于主流的实例分割算法(如Mask R-CNN[1])。2019年,一阶段(one-stage)无锚点(anchor-free)的目标检测方法迎来了新一轮的爆发,很多优秀的one-stage目标检测网络被提出,如CenterNet[3], FCOS[4]等。这一类方法相较于two-stage的算法,不依赖预设定的anchor,直接预测bounding box所需的全部信息,如位置、框的大小、类别等,因此具有框架简单灵活,速度快等优点。于是很自然的便会想到,实例分割任务是否也能够采用这种one-stage anchor-free的思路来实现更优的速度和精度的平衡?我们的论文分析了该问题中存在的两个难点,并提出CenterMask方法予以解决。图1. 目标检测,语义分割和实例分割的区别[1]
▲one-stage实例分割的难点
相较于one-stage目标检测,one-stage的实例分割更为困难。不同于目标检测用四个角的坐标即可表示物体的bounding box,实例分割的mask的形状和大小都更为灵活,很难用固定大小的向量来表示。从问题本身出发,one-stage的实例分割主要面临两个难点:
如何区分不同的物体实例,尤其是同一类别下的物体实例。two-stage的方法利用感兴趣区域(Region of Interest,简称ROI)限制了单个物体的范围,只需要对ROI内部的区域进行分割,大大减轻了其他物体的干扰。而one-stage的方法需要直接对图像中的所有物体进行分割。
如何保留像素级的位置信息,这是two-stage和one-stage的实例分割面临的普遍问题。分割本质上是像素级的任务,物体边缘像素的分割精细程度对最终的效果有较大影响。而现有的实例分割方法大多将固定大小的特征转换到原始物体的大小,或者利用固定个数的点对轮廓进行描述,这些方式都无法较好的保留原始图像的空间信息。
遵照目标检测的设定,现有的实例分割方法可大致分为两类:二阶段(two-stage)实例分割方法和一阶段(one-stage)实例分割方法。
two-stage的实例分割遵循先检测后分割的流程,首先对全图进行目标检测得到bounding box,然后对bounding box内部的区域进行分割,得到每个物体的mask。two-stage的方法的主要代表是Mask R-CNN[1],该方法在Faster R-CNN[2]的网络上增加了一个mask分割的分支,用于对每个感兴趣区域(Region of Interest,简称ROI)进行分割。而把不同大小的ROI映射为同样尺度的mask会带来位置精度的损失,因此该方法引入了RoIAlign来恢复一定程度的位置信息。PANet[5]通过增强信息在网络中的传播来对Mask R-CNN网络进行改进。Mask Scoring R-CNN[6]通过引入对mask进行打分的模块来改善分割后mask的质量。上述two-stage的方法可以取得SOTA的效果,但是方法较为复杂且耗时,因此人们也开始积极探索更简单快速的one-stage实例分割算法。
不同于上述方法,我们提出的CenterMask网络,同时包含一个全局显著图生成分支和一个局部形状预测分支,能够在实现像素级特征对齐的情况下实现不同物体实例的区分。
ー 2 ー
CenterMask介绍
本工作旨在提出一个one-stage的图像实例分割算法,不依赖预先设定的ROI区域来进行mask的预测,这需要模型同时进行图像中物体的定位、分类和分割。为了实现该任务,我们将实例分割拆分为两个平行的子任务,然后将两个子任务得到的结果进行结合,以得到每个实例的最终分割结果。第一个分支(即Local Shape分支)从物体的中心点表示中获取粗糙的形状信息,用于约束不同物体的位置区域以自然地将不同的实例进行区分。第二个分支(即Global Saliency分支)对整张图像预测全局的显著图,用于保留准确的位置信息,实现精准的分割。最终,粗糙但instance-aware的local shape和精细但instance-unaware的global saliency进行组合,以得到每个物体的分割结果。▲网络整体框架
图2. CenterMask网络结构图
CenterMask整体网络结构图如图2所示,给定一张输入图像,经过backbone网络提取特征之后,网络输出五个平行的分支。其中Heatmap和Offset分支用于预测所有中心点的位置坐标,坐标的获得遵循关键点预测的一般流程。Shape和Size分支用于预测中心点处的Local Shape,Saliency分支用于预测Global Saliency Map。可以看到,预测的Local Shape含有粗糙但是instance-aware的形状信息,而Global Saliency含有精细但是instance-aware的显著性信息。最终,每个位置点处得到的Local Shape和对应位置处的Global Saliency进行乘积,以得到最终每个实例的分割结果。Local Shape和Global Saliency分支的细节将在下文介绍。图3. Local Shape预测分支
ー 3 ー
实验结果
▲可视化结果图4. CenterMask网络不同设定下的分割结果
为了验证本文提出的Local Shape和Global Saliency两个分支的效果,我们对独立的分支进行了分割结果的可视化,如图4所示。其中(a)表示只有Local Shape分支网络的输出结果,可以看到,虽然预测的mask比较粗糙,但是该分支可以较好的区分出不同的物体。(b)表示只有Global Saliency分支网络输出的结果,可以看到,在物体之间不存在遮挡的情形下,仅用Saliency分支便可实现物体精细的分割。(c)表示在复杂场景下CenterMask的表现,从左到右分别为只有Local Shape分支,只有Global Saliency分支和二者同时存在时CenterMask的分割效果。可以看到,在物体之间存在遮挡时,仅靠Saliency分支无法较好的分割,而Shape和Saliency分支的结合可以同时在精细分割的同时实现不同实例之间的区分。图5. CenterMask与其他方法在COCO test-dev数据集上的对比
CenterMask与其他方法在COCO test-dev数据集上的精度(AP)和速度(FPS)对比见图5。其中有两个模型在精度上优于我们的方法:two-stage的Mask R-CNN和one-stage的TensorMask,但是他们的速度分别大约4fps和8fps慢于我们的方法。除此之外,我们的方法在速度和精度上都优于其他的one-stage实例分割算法,实现了在速度和精度上的均衡。CenterMask和其他方法的可视化效果对比见图6。
图6. CenterMask与其他方法在COCO 数据集上的可视化对比
除此之外,我们还将提出的Local Shape和Global Saliency分支迁移至了主流的one-stage目标检测网络FCOS,最终的实验效果见图7。最好的模型可以实现38.5的精度,证明了本方法较好的适用性。图7. CenterMask-FCOS在 COCO test-dev数据集上的性能
ー 4 ー
未来展望
首先,CenterMask方法作为我们在one-stage实例分割领域的初步尝试,取得了较好的速度和精度的均衡,但是本质上仍未能完全脱离目标检测的影响,未来希望能够探索出不依赖box crop的方法,简化整个流程。其次,由于CenterMask预测Global Saliency的思想启发自语义分割的思路,而全景分割是同时融合了实例分割和语义分割的任务,未来希望我们的方法在全景分割领域也能有更好的应用,也希望后续有更多同时结合语义分割和实例分割思想的工作被提出。 参考文献 [1] He K, Gkioxari G, Dollár P, et al. Mask r-cnn[C]//Proceedings of the IEEE international conference on computer vision. 2017: 2961-2969. [2] Ren S, He K, Girshick R, et al. Faster r-cnn: Towards real-time object detection with region proposal networks[C]//Advances in neural information processing systems. 2015: 91-99. [3] Zhou X, Wang D, Krähenbühl P. Objects as points[J]. arXiv preprint arXiv:1904.07850, 2019. [4] Tian Z, Shen C, Chen H, et al. Fcos: Fully convolutional one-stage object detection[C]//Proceedings of the IEEE International Conference on Computer Vision. 2019: 9627-9636. [5] Liu S, Qi L, Qin H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 8759-8768. [6] Huang Z, Huang L, Gong Y, et al. Mask scoring r-cnn[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 6409-6418. [7] Dai J, He K, Li Y, et al. Instance-sensitive fully convolutional networks[C]//European Conference on Computer Vision. Springer, Cham, 2016: 534-549. [8] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 3431-3440. [9] Bolya D, Zhou C, Xiao F, et al. YOLACT: real-time instance segmentation[C]//Proceedings of the IEEE International Conference on Computer Vision. 2019: 9157-9166. [10] Xie, Enze, et al. "Polarmask: Single shot instance segmentation with polar representation." //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2020 [11] Chen, Xinlei, et al. "Tensormask: A foundation for dense object segmentation." Proceedings of the IEEE International Conference on Computer Vision. 2019. 【免责声明】文章为作者独立观点,不代表焉知自动驾驶立场。如因作品内容、版权等存在问题,请于本文刊发30日内联系焉知自动驾驶进行删除或洽谈版权使用事宜。原文链接:https://arxiv.org/abs/2004.04446。Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。