赞
踩
Hive:由Facebook 开源用于解决海量结构化日志的数据统计工具。
Hive 是基于 Hadoop 的一个数据仓库工具,可以将结构化的数据文件映射为一张表,并提供类 SQL 查询功能。
将 HQL 转化成MapReduce 程序
(1)Hive 处理的数据存储在 HDFS
(2)Hive 分析数据底层的实现是 MapReduce
(3)执行程序运行在 Yarn 上
(1)操作接口采用类 SQL 语法,提供快速开发的能力(简单、容易上手)。
(2)避免了去写 MapReduce,减少开发人员的学习成本。
(3)Hive 的执行延迟比较高,因此 Hive 常用于数据分析,对实时性要求不高的场合。
(4)Hive 优势在于处理大数据,对于处理小数据没有优势,因为Hive 的执行延迟比较高。
(5)Hive 支持用户自定义函数,用户可以根据自己的需求来实现自己的函数。
(1)Hive 的 HQL 表达能力有限
(2)Hive 的效率比较低
(1)用户接口:Client
CLI(command-line interface)、JDBC/ODBC(jdbc 访问 hive)、WEBUI(浏览器访问hive)
(2)元数据:Metastore
元数据包括:表名、表所属的数据库(默认是 default)、表的拥有者、列/分区字段、表的类型(是否是外部表)、表的数据所在目录等;
默认存储在自带的 derby 数据库中,推荐使用 MySQL 存储Metastore
(3)Hadoop
使用HDFS 进行存储,使用 MapReduce 进行计算。
(4)驱动器:Driver
解析器(SQL Parser):将SQL 字符串转换成抽象语法树 AST,这一步一般都用第三方工具库完成,比如 antlr;对AST 进行语法分析,比如表是否存在、字段是否存在、SQL语义是否有误。
编译器(Physical Plan):将AST 编译生成逻辑执行计划。
优化器(Query Optimizer):对逻辑执行计划进行优化。
执行器(Execution):把逻辑执行计划转换成可以运行的物理计划。对于Hive 来说,就是MR/Spark。
Hive 通过给用户提供的一系列交互接口,接收到用户的指令(SQL),使用自己的 Driver,结合元数据(MetaStore),将这些指令翻译成 MapReduce,提交到Hadoop 中执行,最后,将执行返回的结果输出到用户交互接口。
由于 Hive 采用了类似 SQL 的查询语言 HQL(Hive Query Language),因此很容易将 Hive 理解为数据库。其实从结构上来看,Hive 和数据库除了拥有类似的查询语言,再无类似之处。数据库可以用在Online 的应用中,但是Hive 是为数据仓库而设计的。
(1) 查询语言
由于 SQL 被广泛的应用在数据仓库中,因此,专门针对 Hive 的特性设计了类 SQL 的查询语言HQL。熟悉 SQL 开发的开发者可以很方便的使用Hive 进行开发。
(2)数据更新
由于Hive 是针对数据仓库应用设计的,而数据仓库的内容是读多写少的。因此,Hive 中不建议对数据的改写,所有的数据都是在加载的时候确定好的。而数据库中的数据通常是需要经常进行修改的,因此可以使用 INSERT INTO … VALUES 添加数据,使用 UPDATE … SET 修改数据。
(3)执行延迟
Hive 在查询数据的时候,由于没有索引,需要扫描整个表,因此延迟较高。另外一个导致 Hive 执行延迟高的因素是 MapReduce 框架。由于MapReduce 本身具有较高的延迟,因此在利用MapReduce 执行Hive 查询时,也会有较高的延迟。相对的,数据库的执行延迟较低。当然,这个低是有条件的,即数据规模较小,当数据规模大到超过数据库的处理能力的时候,Hive 的并行计算显然能体现出优势。
(4)数据规模
由于Hive 建立在集群上并可以利用 MapReduce 进行并行计算,因此可以支持很大规模的数据;对应的,数据库可以支持的数据规模较小。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。